DES加密原理


DES加密算法

一、 概述

DES加密算法属于对称密码算法中的分组加密算法

 

密钥长64位,56位参与运算,8位为检验位(8,16,24..)

 

DES加密将明文分为固定的字节块,对字节块进行加密,最后串在一起便是密文

 

二、加密流程与加密步骤

流程图

 

 

步骤(全程L1只是通过R0来填充)

 

 

三、加密步骤之IP置换

 

左边是初始置换表,置换后将64位明文分为两组32位数据

四、加密步骤之16轮迭代(相当于流程图中的f()函数)

F轮函数

1、 E扩展

 

扩展表

 

中间白色的是原来的数据,两边灰色的是扩展的数据

 

扩展规律:

 

 

每组数据的中间四个数据就是原来未扩展时的数据,扩展后第二组数据的第一个位与扩展

 

前,第一组数据的最后一位相等,扩展后第二组的最后一位等于扩展前数据的第一个位…以

 

此类推

 

 

2、异或

E扩展完成后与对应的轮密钥进行异或(密钥的生成下文会说)

 

3、S盒压缩处理

主要步骤就是将48位输入分为8块6位数据,经过8个S盒进行压缩,处理得到8个4位

数据,合到一起即为32位数据

 

 

 

主要压缩方法是将6位数据的头尾与中间分开,分别作为行数与列数,直接取对应的S盒中

 

查找对应的数据(四位)替换成原来的6位数据即可

 

下面是S盒表

 

 

4、P盒置换

将32位的数据进行置换

 

至此,一次轮函数完成

最终结果与L0进行异或(就是流程图中的异或),并把值赋给R1,L1 = R0

再把L1,R1带入进行循环

 

反复直至得到L16与R16

五、加密步骤之逆置换

将L16与R16的值拼接到一起经过逆置换,即得到DES密文

 

 

六、密钥生成

 

 

 

密钥是64位的,我们通过PC-1置换表(上图)变成56位

然后把56位数据的高28位与低28位分别给C0,D0

C0,D0是第1次迭代,两个数据都需要循环左移位1次,得到C1,D1

再把C1,D1拼接起来,经过PC2表置换,得到K1,K1即为第一个轮密钥

 

再把C1,D1经过第2次迭代,两个数据都需要循环左移1次,得到C2,D2,再次拼接,PC-2置换,得到K2,K2即为第二个轮密钥

再把C2,D2经过第三次迭代,左移2次…

 

如此反复共16次,一共会得到16个轮密钥

 

 参考

https://www.bilibili.com/video/BV1KQ4y127AT?spm_id_from=333.999.0.0

 土豆姐姐yyds

 

 

七、第一种代码实现方案

目前网上流传两种加密DES的加密方法,感觉这种方法DES加密用的多,第二种,3DES加密用的多

代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//密钥
//64位变56位密钥置换表
int pc_1[56]={
    57,49,41,33,25,17,9,
    1,58,50,42,34,26,18,
    10,2,59,51,43,35,27,
    19,11,3,60,52,44,36,
    63,55,47,39,31,23,15,
    7,62,54,46,38,30,22,
    14,6,61,53,45,37,29,
    21,13,5,28,20,12,4
    };
//循环左移表
int left_list[16]={1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};
//56位变48位密钥置换表
int pc_2[48]={
    14,17,11,24,1,5,
    3,28,15,6,21,10,
    23,19,12,4,26,8,
    16,7,27,20,13,2,
    41,52,31,37,47,55,
    30,40,51,45,33,48,
    44,49,39,56,34,53,
    46,42,50,36,29,32
    };

//明文
//IP置换表
int IP[64]={
    58,50,42,34,26,18,10,2,
    60,52,44,36,28,20,12,4,
    62,54,46,38,30,22,14,6,
    64,56,48,40,32,24,16,8,
    57,49,41,33,25,17,9,1,
    59,51,43,35,27,19,11,3,
    61,53,45,37,29,21,13,5,
    63,55,47,39,31,23,15,7
    };
//r数组拓展置换表
int E[48]={
    32,1,2,3,4,5,
    4,5,6,7,8,9,
    8,9,10,11,12,13,
    12,13,14,15,16,17,
    16,17,18,19,20,21,
    20,21,22,23,24,25,
    24,25,26,27,28,29,
    28,29,30,31,32,1
    };
//l数组s盒置换表
int s_box[8][4][16]={
    14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
    0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
    4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
    15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

    15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
    3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
    0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
    13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

    10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
    13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
    13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
    1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

    7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
    13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
    10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
    3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

    2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
    14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
    4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
    11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

    12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
    10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
    9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
    4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

    4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
    13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
    1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
    6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

    13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
    1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
    7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
    2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
};
//P盒置换
int p[32]={16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25};
//IP逆置换表
int IP_[64]={
    40,8,48,16,56,24,64,32,
    39,7,47,15,55,23,63,31,
    38,6,46,14,54,22,62,30,
    37,5,45,13,53,21,61,29,
    36,4,44,12,52,20,60,28,
    35,3,43,11,51,19,59,27,
    34,2,42,10,50,18,58,26,
    33,1,41,9,49,17,57,25
    };

//循环左移,arr为初始数组,start为数组的初始位置,end为数组的末尾位置
void Reverse(char *arr,int start,int end){
    for(;start<end;start++,end--){
        int s=arr[end];
        arr[end]=arr[start];
        arr[start]=s;
    }
}
//arr初始数组,n数组长度,k左移位数  1234567
void LeftShift(char *arr,int n,int k){
    k=k%n;
    Reverse(arr,0,k-1);//将前面k位逆置1234->4321
    Reverse(arr,k,n-1);//将后面几位逆置 567->765
    Reverse(arr,0,n-1);//整个数组逆置4321765->5671234
}
//置换表,a为初始数组,change置换表,result结果数组,len想要置换的长度
void change_table(char *a,int *change,char *result,int len){
    int i;
    for(i=0;i<len;i++){
        result[i]=a[change[i]-1];
    }
}
//合并数组
void merge(char *dest, char *src1, char *src2)
{
    while(*src1) *dest++ = *src1++;
    while(*src2) *dest++ = *src2++;
}
//子密钥生成函数,key为初始64位密钥,key_48为子密钥生成后的48位密钥
void get_16_key(char *key_64,char key_48[][49]){
    char key_56[57]="\0";//第一次置换后保存的56位密钥
    char c[17][28];
    char d[17][28];//需要用到c0-c16,每个28位

    memset(c,0,sizeof(c));
    memset(d,0,sizeof(d));
    change_table(key_64,pc_1,key_56,56);//第一次置换,64位密钥

    //c0d0初始化
    for(int i=0;i<56;i++){
        if(i<28){
            c[0][i]=key_56[i];//前面28位密钥赋值给c0
            //printf("%c",c[0][i]);
        }
        else{
            d[0][i-28]=key_56[i];//前面28位密钥赋值给c0
           // printf("%c",d[0][i-28]);
        }
    }
    //生成后面的16个子密钥
    printf("16个子密钥为: \n");
    for(int i=1,j=0;i<17;i++,j++){
        for(int s=0;s<28;s++){
            c[i][s]=c[i-1][s];
            d[i][s]=d[i-1][s];
        }
        LeftShift(d[i],sizeof(d[i]),left_list[j]);
        LeftShift(c[i],sizeof(c[i]),left_list[j]);
        //每次左移完成后,将c和d拼接起来并进行第二次置换为48位子密钥
        memset(key_56,0,strlen(key_56));
        for(int k=0;k<56;k++){
            if(k<28)
                key_56[k]=c[i][k];
            else
                key_56[k]=d[i][k-28];
        }
        change_table(key_56,pc_2,key_48[i-1],48);//得到最终的子密钥

        printf("k%d=",i);
        puts(key_48[i-1]);
    }
}
//加密算法
void des(char *mingwen_64,char *key_64,char *result,int type){
    int i,j,k;
    char key_48[16][49];//16个子密钥48位
    char mingwen_IP[65]="\0";//IP 置换后的64位明文
    char r_48[49]="\0";//拓展置换后
    char l[17][33];
    char r[17][33];//需要用到l0-l16,每个32位
    char bit6[8][6];//s盒置换中用到的8个6位的块
    char r_32[33]="\0";//p盒置换后的32位

    memset(key_48,0,sizeof(key_48));
    memset(l,0,sizeof(l));
    memset(r,0,sizeof(r));
    memset(bit6,0,sizeof(bit6));

    get_16_key(key_64,key_48);//获取16个子密钥保存在key_48中
    change_table(mingwen_64,IP,mingwen_IP,64);//对明文进行IP置换

    //初始化l0r0
    for(i=0;i<64;i++){
        if(i<32){
            l[0][i]=mingwen_IP[i];
        }else{
            r[0][i-32]=mingwen_IP[i];
        }
    }

    //16次递推运算
    for(i=1;i<17;i++){      //Rn=L(n-1)异或P( S ( ( E ( R(n-1) ) 异或 Kn ) ) )
        //获取ln
        for(j=0;j<32;j++){
            l[i][j]=r[i-1][j];
        }
        //获取rn
        //拓展置换,将r从32位拓展到48位
        change_table(r[i-1],E,r_48,48);

        //与k子密钥进行异或
        int ch;
        if(type==1){    //加密
            for(j=0;j<48;j++){
                ch=r_48[j]^key_48[i-1][j];
                r_48[j]=ch+'0';
            }
        }
        else{
            for(j=0;j<48;j++){
                ch=r_48[j]^key_48[16-i][j];        // 加密和解密不一样的地方就在这里 // 
                r_48[j]=ch+'0';
            }
        }

        //s盒转换为32位
        int a=0;
        int b=0;//控制s盒置换后的位置
        for(j=0;j<8;j++){    //48位数据分为8个6位的块,0-7
            for(k=0;k<6;k++){
                bit6[j][k]=r_48[a];
                a++;
            }
            int x,y,re;//x行数 y列数 re结果
            x=(bit6[j][0]-'0')*2+(bit6[j][5]-'0');//取出这一块当中第一位和第六位形成十进制数x作为行数
            y=(bit6[j][1]-'0')*8+(bit6[j][2]-'0')*4+(bit6[j][3]-'0')*2+(bit6[j][4]-'0');//取出中间的4位形成十进制数作为列数
            //每一块都有一个对应的s盒
            re=s_box[j][x][y];//去这一块对应的s盒中的x行y列找到结果
            //结果转成二进制
            char str[4]={'0','0','0','0'};
            int q=0;//余数
            int c=3;
            while(re!=0){
                q=re%2;
                str[c]=q+48;
                c--;
                re=re/2;
            }
            for(int d=0;d<4;d++){
                r[i][b]=str[d];
                b++;
            }
        }
        //p盒置换后与l数组进行异或
        change_table(r[i],p,r_32,32);
        for(j=0;j<32;j++){
            r[i][j]=(l[i-1][j]^r_32[j])+'0';
        }
        printf("N=%d\n",i);
        printf("L%d=",i);
        puts(l[i]);
        printf("R%d=",i);
        puts(r[i]);
    }
    //由r16l16和一次IP逆置换获得最终的密文
    for(i=0;i<64;i++){
        if(i<32){
            mingwen_64[i]=r[16][i];
        }
        else{
            mingwen_64[i]=l[16][i-32];
        }
    }
    change_table(mingwen_64,IP_,result,64);//IP逆置换最后的密文
}
int main(){
//    char mingwen_64[65];//明文0011000000110001001100100011001100110100001101010011011000110111
//    char result1[65]="\0";//由明文加密得到的密文
//    char ming_key_64[65];//64位加密密钥 0011000100110010001100110011010000110101001101100011011100111000

//    char miwen_64[65];//密文
//    char mi_key_64[65];//64位解密密钥
//    char result2[65]="\0";//由密文解密得到的明文

//    printf("请输入要加密的明文:");
//    gets(mingwen_64);
//    printf("请输入加密密钥:");
//    gets(ming_key_64);
    char mingwen_64[65] = "0011000000110001001100100011001100110100001101010011011000110111";
    char ming_key_64[65] = "0011000100110010001100110011010000110101001101100011011100111000";
    char result1[65]={0};
    //加密 
//    printf("加密过程:\n");
    des(mingwen_64,ming_key_64,result1,1);//1代表加密
    printf("加密后的密文为:\n");
    puts(result1);
    getchar();
//    printf("请输入要解密的密文:");
//    gets(miwen_64);
//    printf("请输入解密密钥:");
//    gets(mi_key_64);
    //解密
//    printf("解密过程:\n");
    char miwen_64[65] = "1000101110110100011110100000110011110000101010010110001001101101";
    char mi_key_64[65] = "0011000100110010001100110011010000110101001101100011011100111000";
    char result2[65]={0};
    
    des(miwen_64,mi_key_64,result2,2);//2代表解密
    printf("解密后的明文为:\n");
    puts(result2);
    getchar();
    return 0;
}

 

 

 

八、第二种代码实现方案

代码如下:

#include <stdio.h>
#include <stddef.h>
#include <stdint.h>
#define DES_ENCRYPT     1  
#define DES_DECRYPT     0  

#define ERR_DES_INVALID_INPUT_LENGTH              -0x0002 /**< The data input has an invalid length. */  

#define MBEDTLS_DES_KEY_SIZE    8  
#define DES_KEY_SIZE         (8)  
#define DES3_KEY2_SIZE       (16)  
#define DES3_KEY3_SIZE       (24) 

typedef struct
{
    uint32_t sk[32];            /*!<  DES subkeys       */
}des_context;

/**
 * \brief          Triple-DES context structure
 */
typedef struct
{
    uint32_t sk[96];            /*!<  3DES subkeys      */
}des3_context;

#define DES_C

#if defined(DES_C)


#include <string.h>
#include <stdlib.h>


#if !defined(DES_ALT)

/* Implementation that should never be optimized out by the compiler */
static void zeroize( void *v, size_t n ) {
    volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
}

/*
 * 32-bit integer manipulation macros (big endian)
 */
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i)                            \
{                                                       \
    (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
        | ( (uint32_t) (b)[(i) + 1] << 16 )             \
        | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
        | ( (uint32_t) (b)[(i) + 3]       );            \
}
#endif

#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i)                            \
{                                                       \
    (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
    (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
    (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
    (b)[(i) + 3] = (unsigned char) ( (n)       );       \
}
#endif

/*
 * Expanded DES S-boxes
 */
static const uint32_t SB1[64] =
{
    0x01010400, 0x00000000, 0x00010000, 0x01010404,
    0x01010004, 0x00010404, 0x00000004, 0x00010000,
    0x00000400, 0x01010400, 0x01010404, 0x00000400,
    0x01000404, 0x01010004, 0x01000000, 0x00000004,
    0x00000404, 0x01000400, 0x01000400, 0x00010400,
    0x00010400, 0x01010000, 0x01010000, 0x01000404,
    0x00010004, 0x01000004, 0x01000004, 0x00010004,
    0x00000000, 0x00000404, 0x00010404, 0x01000000,
    0x00010000, 0x01010404, 0x00000004, 0x01010000,
    0x01010400, 0x01000000, 0x01000000, 0x00000400,
    0x01010004, 0x00010000, 0x00010400, 0x01000004,
    0x00000400, 0x00000004, 0x01000404, 0x00010404,
    0x01010404, 0x00010004, 0x01010000, 0x01000404,
    0x01000004, 0x00000404, 0x00010404, 0x01010400,
    0x00000404, 0x01000400, 0x01000400, 0x00000000,
    0x00010004, 0x00010400, 0x00000000, 0x01010004
};

static const uint32_t SB2[64] =
{
    0x80108020, 0x80008000, 0x00008000, 0x00108020,
    0x00100000, 0x00000020, 0x80100020, 0x80008020,
    0x80000020, 0x80108020, 0x80108000, 0x80000000,
    0x80008000, 0x00100000, 0x00000020, 0x80100020,
    0x00108000, 0x00100020, 0x80008020, 0x00000000,
    0x80000000, 0x00008000, 0x00108020, 0x80100000,
    0x00100020, 0x80000020, 0x00000000, 0x00108000,
    0x00008020, 0x80108000, 0x80100000, 0x00008020,
    0x00000000, 0x00108020, 0x80100020, 0x00100000,
    0x80008020, 0x80100000, 0x80108000, 0x00008000,
    0x80100000, 0x80008000, 0x00000020, 0x80108020,
    0x00108020, 0x00000020, 0x00008000, 0x80000000,
    0x00008020, 0x80108000, 0x00100000, 0x80000020,
    0x00100020, 0x80008020, 0x80000020, 0x00100020,
    0x00108000, 0x00000000, 0x80008000, 0x00008020,
    0x80000000, 0x80100020, 0x80108020, 0x00108000
};

static const uint32_t SB3[64] =
{
    0x00000208, 0x08020200, 0x00000000, 0x08020008,
    0x08000200, 0x00000000, 0x00020208, 0x08000200,
    0x00020008, 0x08000008, 0x08000008, 0x00020000,
    0x08020208, 0x00020008, 0x08020000, 0x00000208,
    0x08000000, 0x00000008, 0x08020200, 0x00000200,
    0x00020200, 0x08020000, 0x08020008, 0x00020208,
    0x08000208, 0x00020200, 0x00020000, 0x08000208,
    0x00000008, 0x08020208, 0x00000200, 0x08000000,
    0x08020200, 0x08000000, 0x00020008, 0x00000208,
    0x00020000, 0x08020200, 0x08000200, 0x00000000,
    0x00000200, 0x00020008, 0x08020208, 0x08000200,
    0x08000008, 0x00000200, 0x00000000, 0x08020008,
    0x08000208, 0x00020000, 0x08000000, 0x08020208,
    0x00000008, 0x00020208, 0x00020200, 0x08000008,
    0x08020000, 0x08000208, 0x00000208, 0x08020000,
    0x00020208, 0x00000008, 0x08020008, 0x00020200
};

static const uint32_t SB4[64] =
{
    0x00802001, 0x00002081, 0x00002081, 0x00000080,
    0x00802080, 0x00800081, 0x00800001, 0x00002001,
    0x00000000, 0x00802000, 0x00802000, 0x00802081,
    0x00000081, 0x00000000, 0x00800080, 0x00800001,
    0x00000001, 0x00002000, 0x00800000, 0x00802001,
    0x00000080, 0x00800000, 0x00002001, 0x00002080,
    0x00800081, 0x00000001, 0x00002080, 0x00800080,
    0x00002000, 0x00802080, 0x00802081, 0x00000081,
    0x00800080, 0x00800001, 0x00802000, 0x00802081,
    0x00000081, 0x00000000, 0x00000000, 0x00802000,
    0x00002080, 0x00800080, 0x00800081, 0x00000001,
    0x00802001, 0x00002081, 0x00002081, 0x00000080,
    0x00802081, 0x00000081, 0x00000001, 0x00002000,
    0x00800001, 0x00002001, 0x00802080, 0x00800081,
    0x00002001, 0x00002080, 0x00800000, 0x00802001,
    0x00000080, 0x00800000, 0x00002000, 0x00802080
};

static const uint32_t SB5[64] =
{
    0x00000100, 0x02080100, 0x02080000, 0x42000100,
    0x00080000, 0x00000100, 0x40000000, 0x02080000,
    0x40080100, 0x00080000, 0x02000100, 0x40080100,
    0x42000100, 0x42080000, 0x00080100, 0x40000000,
    0x02000000, 0x40080000, 0x40080000, 0x00000000,
    0x40000100, 0x42080100, 0x42080100, 0x02000100,
    0x42080000, 0x40000100, 0x00000000, 0x42000000,
    0x02080100, 0x02000000, 0x42000000, 0x00080100,
    0x00080000, 0x42000100, 0x00000100, 0x02000000,
    0x40000000, 0x02080000, 0x42000100, 0x40080100,
    0x02000100, 0x40000000, 0x42080000, 0x02080100,
    0x40080100, 0x00000100, 0x02000000, 0x42080000,
    0x42080100, 0x00080100, 0x42000000, 0x42080100,
    0x02080000, 0x00000000, 0x40080000, 0x42000000,
    0x00080100, 0x02000100, 0x40000100, 0x00080000,
    0x00000000, 0x40080000, 0x02080100, 0x40000100
};

static const uint32_t SB6[64] =
{
    0x20000010, 0x20400000, 0x00004000, 0x20404010,
    0x20400000, 0x00000010, 0x20404010, 0x00400000,
    0x20004000, 0x00404010, 0x00400000, 0x20000010,
    0x00400010, 0x20004000, 0x20000000, 0x00004010,
    0x00000000, 0x00400010, 0x20004010, 0x00004000,
    0x00404000, 0x20004010, 0x00000010, 0x20400010,
    0x20400010, 0x00000000, 0x00404010, 0x20404000,
    0x00004010, 0x00404000, 0x20404000, 0x20000000,
    0x20004000, 0x00000010, 0x20400010, 0x00404000,
    0x20404010, 0x00400000, 0x00004010, 0x20000010,
    0x00400000, 0x20004000, 0x20000000, 0x00004010,
    0x20000010, 0x20404010, 0x00404000, 0x20400000,
    0x00404010, 0x20404000, 0x00000000, 0x20400010,
    0x00000010, 0x00004000, 0x20400000, 0x00404010,
    0x00004000, 0x00400010, 0x20004010, 0x00000000,
    0x20404000, 0x20000000, 0x00400010, 0x20004010
};

static const uint32_t SB7[64] =
{
    0x00200000, 0x04200002, 0x04000802, 0x00000000,
    0x00000800, 0x04000802, 0x00200802, 0x04200800,
    0x04200802, 0x00200000, 0x00000000, 0x04000002,
    0x00000002, 0x04000000, 0x04200002, 0x00000802,
    0x04000800, 0x00200802, 0x00200002, 0x04000800,
    0x04000002, 0x04200000, 0x04200800, 0x00200002,
    0x04200000, 0x00000800, 0x00000802, 0x04200802,
    0x00200800, 0x00000002, 0x04000000, 0x00200800,
    0x04000000, 0x00200800, 0x00200000, 0x04000802,
    0x04000802, 0x04200002, 0x04200002, 0x00000002,
    0x00200002, 0x04000000, 0x04000800, 0x00200000,
    0x04200800, 0x00000802, 0x00200802, 0x04200800,
    0x00000802, 0x04000002, 0x04200802, 0x04200000,
    0x00200800, 0x00000000, 0x00000002, 0x04200802,
    0x00000000, 0x00200802, 0x04200000, 0x00000800,
    0x04000002, 0x04000800, 0x00000800, 0x00200002
};

static const uint32_t SB8[64] =
{
    0x10001040, 0x00001000, 0x00040000, 0x10041040,
    0x10000000, 0x10001040, 0x00000040, 0x10000000,
    0x00040040, 0x10040000, 0x10041040, 0x00041000,
    0x10041000, 0x00041040, 0x00001000, 0x00000040,
    0x10040000, 0x10000040, 0x10001000, 0x00001040,
    0x00041000, 0x00040040, 0x10040040, 0x10041000,
    0x00001040, 0x00000000, 0x00000000, 0x10040040,
    0x10000040, 0x10001000, 0x00041040, 0x00040000,
    0x00041040, 0x00040000, 0x10041000, 0x00001000,
    0x00000040, 0x10040040, 0x00001000, 0x00041040,
    0x10001000, 0x00000040, 0x10000040, 0x10040000,
    0x10040040, 0x10000000, 0x00040000, 0x10001040,
    0x00000000, 0x10041040, 0x00040040, 0x10000040,
    0x10040000, 0x10001000, 0x10001040, 0x00000000,
    0x10041040, 0x00041000, 0x00041000, 0x00001040,
    0x00001040, 0x00040040, 0x10000000, 0x10041000
};

/*
 * PC1: left and right halves bit-swap
 */
static const uint32_t LHs[16] =
{
    0x00000000, 0x00000001, 0x00000100, 0x00000101,
    0x00010000, 0x00010001, 0x00010100, 0x00010101,
    0x01000000, 0x01000001, 0x01000100, 0x01000101,
    0x01010000, 0x01010001, 0x01010100, 0x01010101
};

static const uint32_t RHs[16] =
{
    0x00000000, 0x01000000, 0x00010000, 0x01010000,
    0x00000100, 0x01000100, 0x00010100, 0x01010100,
    0x00000001, 0x01000001, 0x00010001, 0x01010001,
    0x00000101, 0x01000101, 0x00010101, 0x01010101,
};

/*
 * Initial Permutation macro
 */
#define DES_IP(X,Y)                                             \
{                                                               \
    T = ((X >>  4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T <<  4);   \
    T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16);   \
    T = ((Y >>  2) ^ X) & 0x33333333; X ^= T; Y ^= (T <<  2);   \
    T = ((Y >>  8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T <<  8);   \
    Y = ((Y << 1) | (Y >> 31)) & 0xFFFFFFFF;                    \
    T = (X ^ Y) & 0xAAAAAAAA; Y ^= T; X ^= T;                   \
    X = ((X << 1) | (X >> 31)) & 0xFFFFFFFF;                    \
}

/*
 * Final Permutation macro
 */
#define DES_FP(X,Y)                                             \
{                                                               \
    X = ((X << 31) | (X >> 1)) & 0xFFFFFFFF;                    \
    T = (X ^ Y) & 0xAAAAAAAA; X ^= T; Y ^= T;                   \
    Y = ((Y << 31) | (Y >> 1)) & 0xFFFFFFFF;                    \
    T = ((Y >>  8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T <<  8);   \
    T = ((Y >>  2) ^ X) & 0x33333333; X ^= T; Y ^= (T <<  2);   \
    T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16);   \
    T = ((X >>  4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T <<  4);   \
}

/*
 * DES round macro
 */
#define DES_ROUND(X,Y)                          \
{                                               \
    T = *SK++ ^ X;                              \
    Y ^= SB8[ (T      ) & 0x3F ] ^              \
         SB6[ (T >>  8) & 0x3F ] ^              \
         SB4[ (T >> 16) & 0x3F ] ^              \
         SB2[ (T >> 24) & 0x3F ];               \
                                                \
    T = *SK++ ^ ((X << 28) | (X >> 4));         \
    Y ^= SB7[ (T      ) & 0x3F ] ^              \
         SB5[ (T >>  8) & 0x3F ] ^              \
         SB3[ (T >> 16) & 0x3F ] ^              \
         SB1[ (T >> 24) & 0x3F ];               \
}

#define SWAP(a,b) { uint32_t t = a; a = b; b = t; t = 0; }

void des_init( des_context *ctx )
{
    memset( ctx, 0, sizeof( des_context ) );
}

void des_free( des_context *ctx )
{
    if( ctx == NULL )
        return;

    zeroize( ctx, sizeof( des_context ) );
}

void des3_init( des3_context *ctx )
{
    memset( ctx, 0, sizeof( des3_context ) );
}

void des3_free( des3_context *ctx )
{
    if( ctx == NULL )
        return;

    zeroize( ctx, sizeof( des3_context ) );
}

static const unsigned char odd_parity_table[128] = { 1,  2,  4,  7,  8,
        11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44,
        47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81,
        82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112,
        115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140,
        143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168,
        171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196,
        199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224,
        227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253,
        254 };

void des_key_set_parity( unsigned char key[DES_KEY_SIZE] )
{
    int i;

    for( i = 0; i < DES_KEY_SIZE; i++ )
        key[i] = odd_parity_table[key[i] / 2];
}

/*
 * Check the given key's parity, returns 1 on failure, 0 on SUCCESS
 */
int des_key_check_key_parity( const unsigned char key[DES_KEY_SIZE] )
{
    int i;

    for( i = 0; i < DES_KEY_SIZE; i++ )
        if( key[i] != odd_parity_table[key[i] / 2] )
            return( 1 );

    return( 0 );
}

/*
 * Table of weak and semi-weak keys
 *
 * Source: http://en.wikipedia.org/wiki/Weak_key
 *
 * Weak:
 * Alternating ones + zeros (0x0101010101010101)
 * Alternating 'F' + 'E' (0xFEFEFEFEFEFEFEFE)
 * '0xE0E0E0E0F1F1F1F1'
 * '0x1F1F1F1F0E0E0E0E'
 *
 * Semi-weak:
 * 0x011F011F010E010E and 0x1F011F010E010E01
 * 0x01E001E001F101F1 and 0xE001E001F101F101
 * 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
 * 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
 * 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
 * 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1
 *
 */

#define WEAK_KEY_COUNT 16

static const unsigned char weak_key_table[WEAK_KEY_COUNT][DES_KEY_SIZE] =
{
    { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 },
    { 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE },
    { 0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E },
    { 0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1 },

    { 0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E },
    { 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01 },
    { 0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1 },
    { 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01 },
    { 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE },
    { 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01 },
    { 0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1 },
    { 0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E },
    { 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE },
    { 0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E },
    { 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE },
    { 0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1 }
};

int des_key_check_weak( const unsigned char key[DES_KEY_SIZE] )
{
    int i;

    for( i = 0; i < WEAK_KEY_COUNT; i++ )
        if( memcmp( weak_key_table[i], key, DES_KEY_SIZE) == 0 )
            return( 1 );

    return( 0 );
}


void des_setkey( uint32_t SK[32], const unsigned char key[DES_KEY_SIZE] )
{
    int i;
    uint32_t X, Y, T;

    GET_UINT32_BE( X, key, 0 );
    GET_UINT32_BE( Y, key, 4 );

    /*
     * Permuted Choice 1
     */
    T =  ((Y >>  4) ^ X) & 0x0F0F0F0F;  X ^= T; Y ^= (T <<  4);
    T =  ((Y      ) ^ X) & 0x10101010;  X ^= T; Y ^= (T      );

    X =   (LHs[ (X      ) & 0xF] << 3) | (LHs[ (X >>  8) & 0xF ] << 2)
        | (LHs[ (X >> 16) & 0xF] << 1) | (LHs[ (X >> 24) & 0xF ]     )
        | (LHs[ (X >>  5) & 0xF] << 7) | (LHs[ (X >> 13) & 0xF ] << 6)
        | (LHs[ (X >> 21) & 0xF] << 5) | (LHs[ (X >> 29) & 0xF ] << 4);

    Y =   (RHs[ (Y >>  1) & 0xF] << 3) | (RHs[ (Y >>  9) & 0xF ] << 2)
        | (RHs[ (Y >> 17) & 0xF] << 1) | (RHs[ (Y >> 25) & 0xF ]     )
        | (RHs[ (Y >>  4) & 0xF] << 7) | (RHs[ (Y >> 12) & 0xF ] << 6)
        | (RHs[ (Y >> 20) & 0xF] << 5) | (RHs[ (Y >> 28) & 0xF ] << 4);

    X &= 0x0FFFFFFF;
    Y &= 0x0FFFFFFF;

    /*
     * calculate subkeys
     */
    for( i = 0; i < 16; i++ )
    {
        if( i < 2 || i == 8 || i == 15 )
        {
            X = ((X <<  1) | (X >> 27)) & 0x0FFFFFFF;
            Y = ((Y <<  1) | (Y >> 27)) & 0x0FFFFFFF;
        }
        else
        {
            X = ((X <<  2) | (X >> 26)) & 0x0FFFFFFF;
            Y = ((Y <<  2) | (Y >> 26)) & 0x0FFFFFFF;
        }

        *SK++ =   ((X <<  4) & 0x24000000) | ((X << 28) & 0x10000000)
                | ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000)
                | ((X <<  6) & 0x01000000) | ((X <<  9) & 0x00200000)
                | ((X >>  1) & 0x00100000) | ((X << 10) & 0x00040000)
                | ((X <<  2) & 0x00020000) | ((X >> 10) & 0x00010000)
                | ((Y >> 13) & 0x00002000) | ((Y >>  4) & 0x00001000)
                | ((Y <<  6) & 0x00000800) | ((Y >>  1) & 0x00000400)
                | ((Y >> 14) & 0x00000200) | ((Y      ) & 0x00000100)
                | ((Y >>  5) & 0x00000020) | ((Y >> 10) & 0x00000010)
                | ((Y >>  3) & 0x00000008) | ((Y >> 18) & 0x00000004)
                | ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001);

        *SK++ =   ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000)
                | ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000)
                | ((X >>  2) & 0x02000000) | ((X <<  1) & 0x01000000)
                | ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000)
                | ((X <<  3) & 0x00080000) | ((X >>  6) & 0x00040000)
                | ((X << 15) & 0x00020000) | ((X >>  4) & 0x00010000)
                | ((Y >>  2) & 0x00002000) | ((Y <<  8) & 0x00001000)
                | ((Y >> 14) & 0x00000808) | ((Y >>  9) & 0x00000400)
                | ((Y      ) & 0x00000200) | ((Y <<  7) & 0x00000100)
                | ((Y >>  7) & 0x00000020) | ((Y >>  3) & 0x00000011)
                | ((Y <<  2) & 0x00000004) | ((Y >> 21) & 0x00000002);
    }
}


/*
 * DES key schedule (56-bit, encryption)
 */
int des_setkey_enc( des_context *ctx, const unsigned char key[DES_KEY_SIZE] )
{
    des_setkey( ctx->sk, key );

    return( 0 );
}

/*
 * DES key schedule (56-bit, decryption)
 */
int des_setkey_dec( des_context *ctx, const unsigned char key[DES_KEY_SIZE] )
{
    int i;

    des_setkey( ctx->sk, key );

    for( i = 0; i < 16; i += 2 )
    {
        SWAP( ctx->sk[i    ], ctx->sk[30 - i] );
        SWAP( ctx->sk[i + 1], ctx->sk[31 - i] );
    }

    return( 0 );
}

static void des3_set2key( uint32_t esk[96],
                          uint32_t dsk[96],
                          const unsigned char key[DES_KEY_SIZE*2] )
{
    int i;

    des_setkey( esk, key );
    des_setkey( dsk + 32, key + 8 );

    for( i = 0; i < 32; i += 2 )
    {
        dsk[i     ] = esk[30 - i];
        dsk[i +  1] = esk[31 - i];

        esk[i + 32] = dsk[62 - i];
        esk[i + 33] = dsk[63 - i];

        esk[i + 64] = esk[i    ];
        esk[i + 65] = esk[i + 1];

        dsk[i + 64] = dsk[i    ];
        dsk[i + 65] = dsk[i + 1];
    }
}

/*
 * Triple-DES key schedule (112-bit, encryption)
 */
int des3_set2key_enc( des3_context *ctx,
                      const unsigned char key[DES_KEY_SIZE * 2] )
{
    uint32_t sk[96];

    des3_set2key( ctx->sk, sk, key );
    zeroize( sk,  sizeof( sk ) );

    return( 0 );
}

/*
 * Triple-DES key schedule (112-bit, decryption)
 */
int des3_set2key_dec( des3_context *ctx,
                      const unsigned char key[DES_KEY_SIZE * 2] )
{
    uint32_t sk[96];

    des3_set2key( sk, ctx->sk, key );
    zeroize( sk,  sizeof( sk ) );

    return( 0 );
}

static void des3_set3key( uint32_t esk[96],
                          uint32_t dsk[96],
                          const unsigned char key[24] )
{
    int i;

    des_setkey( esk, key );
    des_setkey( dsk + 32, key +  8 );
    des_setkey( esk + 64, key + 16 );

    for( i = 0; i < 32; i += 2 )
    {
        dsk[i     ] = esk[94 - i];
        dsk[i +  1] = esk[95 - i];

        esk[i + 32] = dsk[62 - i];
        esk[i + 33] = dsk[63 - i];

        dsk[i + 64] = esk[30 - i];
        dsk[i + 65] = esk[31 - i];
    }
}

/*
 * Triple-DES key schedule (168-bit, encryption)
 */
int des3_set3key_enc( des3_context *ctx,
                      const unsigned char key[DES_KEY_SIZE * 3] )
{
    uint32_t sk[96];

    des3_set3key( ctx->sk, sk, key );
    zeroize( sk,  sizeof( sk ) );

    return( 0 );
}

/*
 * Triple-DES key schedule (168-bit, decryption)
 */
int des3_set3key_dec( des3_context *ctx,
                      const unsigned char key[DES_KEY_SIZE * 3] )
{
    uint32_t sk[96];

    des3_set3key( sk, ctx->sk, key );
    zeroize( sk,  sizeof( sk ) );

    return( 0 );
}

/*
 * DES-ECB block encryption/decryption
 */

int des_crypt_ecb( des_context *ctx,
                    const unsigned char input[8],
                    unsigned char output[8] )
{
    int i;
    uint32_t X, Y, T, *SK;

    SK = ctx->sk;

    GET_UINT32_BE( X, input, 0 );
    GET_UINT32_BE( Y, input, 4 );

    DES_IP( X, Y );

    for( i = 0; i < 8; i++ )
    {
        DES_ROUND( Y, X );
        DES_ROUND( X, Y );
    }

    DES_FP( Y, X );

    PUT_UINT32_BE( Y, output, 0 );
    PUT_UINT32_BE( X, output, 4 );

    return( 0 );
}



/*
 * DES-CBC buffer encryption/decryption
 */
int des_crypt_cbc( des_context *ctx,
                    int mode,
                    size_t length,
                    unsigned char iv[8],
                    const unsigned char *input,
                    unsigned char *output )
{
    int i;
    unsigned char temp[8];

    if( length % 8 )
        return( ERR_DES_INVALID_INPUT_LENGTH );

    if( mode == DES_ENCRYPT )
    {
        while( length > 0 )
        {
            for( i = 0; i < 8; i++ )
                output[i] = (unsigned char)( input[i] ^ iv[i] );

            des_crypt_ecb( ctx, output, output );
            memcpy( iv, output, 8 );

            input  += 8;
            output += 8;
            length -= 8;
        }
    }
    else /* DES_DECRYPT */
    {
        while( length > 0 )
        {
            memcpy( temp, input, 8 );
            des_crypt_ecb( ctx, input, output );

            for( i = 0; i < 8; i++ )
                output[i] = (unsigned char)( output[i] ^ iv[i] );

            memcpy( iv, temp, 8 );

            input  += 8;
            output += 8;
            length -= 8;
        }
    }

    return( 0 );
}


/*
 * 3DES-ECB block encryption/decryption
 */

int des3_crypt_ecb( des3_context *ctx,
                     const unsigned char input[8],
                     unsigned char output[8] )
{
    int i;
    uint32_t X, Y, T, *SK;

    SK = ctx->sk;

    GET_UINT32_BE( X, input, 0 );
    GET_UINT32_BE( Y, input, 4 );

    DES_IP( X, Y );

    for( i = 0; i < 8; i++ )
    {
        DES_ROUND( Y, X );
        DES_ROUND( X, Y );
    }

    for( i = 0; i < 8; i++ )
    {
        DES_ROUND( X, Y );
        DES_ROUND( Y, X );
    }

    for( i = 0; i < 8; i++ )
    {
        DES_ROUND( Y, X );
        DES_ROUND( X, Y );
    }

    DES_FP( Y, X );

    PUT_UINT32_BE( Y, output, 0 );
    PUT_UINT32_BE( X, output, 4 );

    return( 0 );
}



/*
 * 3DES-CBC buffer encryption/decryption
 */
int des3_crypt_cbc( des3_context *ctx,
                     int mode,
                     size_t length,
                     unsigned char iv[8],
                     const unsigned char *input,
                     unsigned char *output )
{
    int i;
    unsigned char temp[8];

    if( length % 8 )
        return( ERR_DES_INVALID_INPUT_LENGTH );

    if( mode == DES_ENCRYPT )
    {
        while( length > 0 )
        {
            for( i = 0; i < 8; i++ )
                output[i] = (unsigned char)( input[i] ^ iv[i] );

            des3_crypt_ecb( ctx, output, output );
            memcpy( iv, output, 8 );

            input  += 8;
            output += 8;
            length -= 8;
        }
    }
    else /* DES_DECRYPT */
    {
        while( length > 0 )
        {
            memcpy( temp, input, 8 );
            des3_crypt_ecb( ctx, input, output );

            for( i = 0; i < 8; i++ )
                output[i] = (unsigned char)( output[i] ^ iv[i] );

            memcpy( iv, temp, 8 );

            input  += 8;
            output += 8;
            length -= 8;
        }
    }

    return( 0 );
}


#endif /* !DES_ALT */

#endif /* DES_C */

/*
 * DES-ECB buffer encryption API
 */
unsigned int des_ecb_encrypt(unsigned char *pout,
                             unsigned char *pdata,
                             unsigned int nlen,
                             unsigned char *pkey)
{
    unsigned char *tmp;
    unsigned int len,i;
    unsigned char ch = '\0';
    des_context ctx;

    des_setkey_enc( &ctx, pkey );

    len = (nlen / 8 + (nlen % 8 ? 1: 0)) * 8;

    //ch = 8 - nlen % 8;
    for(i = 0;i < nlen;i += 8)
    {
        des_crypt_ecb( &ctx, (pdata + i), (pout + i) );
    }
    if(len > nlen)
    {
        tmp = (unsigned char *)malloc(len);
        i -= 8;
        memcpy(tmp,pdata + i,nlen - i);
        memset(tmp + nlen % 8, ch, (8 - nlen % 8) % 8);
        des_crypt_ecb( &ctx, tmp, (pout + i));
        free(tmp);
    }

    des_free( &ctx );
    return len;


}
/*
 * DES-ECB buffer decryption API
 */
unsigned int des_ecb_decrypt(unsigned char *pout,
                             unsigned char *pdata,
                             unsigned int nlen,
                             unsigned char *pkey)
{

    unsigned int i;
    des_context ctx;

    if(nlen % 8)
        return 1;

    des_setkey_dec( &ctx, pkey );


    for(i = 0;i < nlen;i += 8)
    {
        des_crypt_ecb(&ctx, (pdata + i), (pout + i));
    }
    des_free( &ctx );
    return 0;

}

/*
 * DES-CBC buffer encryption API
 */
unsigned int des_cbc_encrypt(unsigned char *pout,
                             unsigned char *pdata,
                             unsigned int nlen,
                             unsigned char *pkey,
                             unsigned char *piv)
{
    des_context ctx;
    unsigned char iv[8] = {0};
    unsigned char *pivb;

    if(piv == NULL)
        pivb = iv;
    else
        pivb = piv;

    des_setkey_enc( &ctx, pkey );

    des_crypt_cbc( &ctx, 1, nlen, pivb, pdata, (pout));

    des_free( &ctx );

    return nlen;


}
/*
 * DES-CBC buffer decryption API
 */
unsigned int des_cbc_decrypt(unsigned char *pout,
                             unsigned char *pdata,
                             unsigned int nlen,
                             unsigned char *pkey,
                             unsigned char *piv)
{

    des_context ctx;
    unsigned char iv[8] = {0};
    unsigned char *pivb;

    if(piv == NULL)
        pivb = iv;
    else
        pivb = piv;

    des_setkey_dec( &ctx, pkey );

    des_crypt_cbc( &ctx, 0, nlen, pivb, pdata, (pout));

    des_free( &ctx );

    return 0;

}
/*
 * 3DES-ECB buffer encryption API
 */
unsigned int des3_ecb_encrypt(unsigned char *pout,
                              unsigned char *pdata,
                              unsigned int nlen,
                              unsigned char *pkey,
                              unsigned int klen)
{
    unsigned char *tmp;
    unsigned int len,i;
    unsigned char ch = '\0';
    des3_context ctx3;

    if(klen == DES3_KEY2_SIZE)//16字节
        des3_set2key_enc( &ctx3, pkey );//根据长度设置key
    else if(klen == DES3_KEY3_SIZE)//24字节
        des3_set3key_enc( &ctx3, pkey );

    len = (nlen / 8 + (nlen % 8 ? 1: 0)) * 8;

    //ch = 8 - nlen % 8;//可以设置补齐内容,常用0或0xFF
    for(i = 0;i < nlen;i += 8)
    {
        des3_crypt_ecb( &ctx3, (pdata + i), (pout + i) );
    }
    if(len > nlen)//不足8字节补齐
    {
        tmp = (unsigned char *)malloc(len);
        i -= 8;
        memcpy(tmp,pdata + i,nlen - i);
        memset(tmp + nlen % 8, ch, (8 - nlen % 8) % 8);
        des3_crypt_ecb( &ctx3, tmp, (pout + i));
        free(tmp);
    }

    des3_free( &ctx3 );
    return len;


}
/*
 * 3DES-ECB buffer decryption API
 */
unsigned int des3_ecb_decrypt(unsigned char *pout,
                              unsigned char *pdata,
                              unsigned int nlen,
                              unsigned char *pkey,
                              unsigned int klen)
{

    unsigned int i;
    des3_context ctx3;

    if(nlen % 8)
        return 1;

    if(klen == DES3_KEY2_SIZE)
        des3_set2key_dec( &ctx3, pkey );
    else if(klen == DES3_KEY3_SIZE)
        des3_set3key_dec( &ctx3, pkey );


    for(i = 0;i < nlen;i += 8)
    {
        des3_crypt_ecb(&ctx3, (pdata + i), (pout + i));
    }
    des3_free( &ctx3 );
    return 0;

}
/*
 * 3DES-CBC buffer encryption API
 */
unsigned int des3_cbc_encrypt(unsigned char *pout,
                              unsigned char *pdata,
                              unsigned int nlen,
                              unsigned char *pkey,
                              unsigned int klen,
                              unsigned char *piv)
{
    des3_context ctx;
    unsigned char iv[8] = {0};
    unsigned char *pivb;
    unsigned int len;
    unsigned char * tmp; 
    if(piv == NULL)
        pivb = iv;
    else
        pivb = piv;

    if(klen == DES3_KEY2_SIZE)
        des3_set2key_enc( &ctx, pkey );
    else if(klen == DES3_KEY3_SIZE)
        des3_set3key_enc( &ctx, pkey );

    if(nlen % 8)
    {
        len = nlen + 8 - nlen % 8;
        tmp = (unsigned char *)calloc(1, len);
        memcpy(tmp, pdata, nlen);
        des3_crypt_cbc( &ctx, 1, len, pivb, tmp, (pout));
        free(tmp);
    }
    else
    {
        des3_crypt_cbc( &ctx, 1, nlen, pivb, pdata, (pout));
    }

    des3_free( &ctx );

    return nlen;


}
/*
 * 3DES-CBC buffer decryption API
 */
unsigned int des3_cbc_decrypt(unsigned char *pout,
                              unsigned char *pdata,
                              unsigned int nlen,
                              unsigned char *pkey,
                              unsigned int klen,
                              unsigned char *piv)
{

    des3_context ctx;
    unsigned char iv[8] = {0};
    unsigned char *pivb;

    if(nlen % 8)
        return 1;

    if(piv == NULL)
        pivb = iv;
    else
        pivb = piv;


    if(klen == DES3_KEY2_SIZE)
        des3_set2key_dec( &ctx, pkey );
    else if(klen == DES3_KEY3_SIZE)
        des3_set3key_dec( &ctx, pkey );

    des3_crypt_cbc( &ctx, 0, nlen, pivb, pdata, (pout));

    des3_free( &ctx );

    return 0;

}


//main函数测试
int des_test_self()
{
    unsigned char buff[1024] = {0};
    unsigned char data[1024] = {0x3F,0x12,0xE7,0xC0,0x2D,0x66,0x5A,0xB0,0xC4,0x2E,0x58,0xF1};
    int ret,len,i;

//  len = MyStrToHex("3F12E7C02D665AB0C42E58F1", data);//不满8字节
    len = strlen((char*)data);
    for(i = 0;i < len;i++)
    {
        printf("%02X",data[i]);
    }
    printf("\r\n");

    unsigned char key[16] = {0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF};
    //DES ECB 加密
    printf("DES ECB ENC::\r\n");
    ret = des_ecb_encrypt(buff,data,len,key);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",buff[i]);
    }
    printf("\r\n");
    //DES ECB 解密
    printf("DES ECB DEC::\r\n");
    memset(data,0,sizeof(data));
    des_ecb_decrypt(data,buff,ret,key);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",data[i]);
    }
    printf("\r\n");

    //DES CBC 加密
    printf("DES CBC ENC::\r\n");
    memset(buff,0,sizeof(buff));
    des_cbc_encrypt(buff,data,ret,key,NULL);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",buff[i]);
    }
    printf("\r\n");

    //DES CBC 解密
    printf("DES CBC DEC::\r\n");
    memset(data,0,sizeof(data));
    des_cbc_decrypt(data,buff,ret,key,NULL);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",data[i]);
    }
    printf("\r\n");
    printf("\r\n");


    //3DES ECB 加密
    printf("3DES ECB ENC::\r\n");
    ret = des3_ecb_encrypt(buff,data,len,key,16);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",buff[i]);
    }
    printf("\r\n");
    //3DES ECB 解密
    printf("3DES ECB DEC::\r\n");
    memset(data,0,sizeof(data));
    des3_ecb_decrypt(data,buff,ret,key,16);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",data[i]);
    }
    printf("\r\n");

    //3DES CBC 加密
    printf("3DES CBC ENC::\r\n");
    memset(buff,0,sizeof(buff));
    des3_cbc_encrypt(buff,data,ret,key,16,NULL);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",buff[i]);
    }
    printf("\r\n");

    //3DES CBC 解密
    printf("3DES CBC DEC::\r\n");
    memset(data,0,sizeof(data));
    des3_cbc_decrypt(data,buff,ret,key,16,NULL);
    for(i = 0;i < ret;i++)
    {
        printf("%02X",data[i]);
    }
    printf("\r\n");


    return 0;
}
int main(){
    
    des_test_self();
    
    return 0;
}

 九、DES解密方法

des:

 

参考 https://developer.aliyun.com/article/173633

 

 就是异或的 17 轮轮密钥的顺序颠倒一下

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM