【學習筆記】用numpy實現一個簡單的MLP


【學習筆記】用numpy實現一個簡單的MLP

之前我用numpy實現了多項式邏輯回歸,這次打算用同樣的數據在MLP上試試

模型結構很簡單,就是一個雙層的MLP,輸入是二維的向量,隱藏層是由三個神經元組成的全連接層(激活函數是tanh),最后通過logistic回歸輸出類別\(\hat y\)

正向及反向傳播公式如下:

正向傳播

反向傳播

然后是代碼實現:

MLP:

# MLP
learning_rate=0.9
k=1e-3
batch_size=32
epoch_num=200
input_size=2
output_size=3
def sigmoid(x):
    return 1/(1+exp(-x))
def forward(x):
    w1=mp['w1']
    b1=mp['b1']
    w2=mp['w2']
    b2=mp['b2']
#     b1*=0
#     b2*=0
    z1=w1@x+b1
    a1=tanh(z1)
    z2=w2@a1+b2
    a2=sigmoid(z2)
    mp['z1']=z1
    mp['a1']=a1
    mp['z2']=z2
    mp['a2']=a2
    return a2
def compute_loss(y):
    w1=mp['w1']
    w2=mp['w2']
    a2=mp['a2']
    return np.mean(-(y*log(a2)+(1-y)*log(1-a2)))+k*(np.linalg.norm(w1,ord=1)+np.linalg.norm(w2,ord=1))
def backward(x,y):
    w1=mp['w1']
    b1=mp['b1']
    w2=mp['w2']
    b2=mp['b2']
    z1=mp['z1']
    a1=mp['a1']
    z2=mp['z2']
    a2=mp['a2']
    dz2=a2-y
    dw2=dz2@a1.T/x.shape[1]
    db2=np.mean(dz2,axis=1,keepdims=True)
    da1=w2.T@dz2
    dz1=(1-a1*a1)*da1
    dw1=dz1@x.T/x.shape[1]
    db1=np.mean(dz1,axis=1,keepdims=True)
    w2-=learning_rate*dw2+k*sign(w2)
    b2-=learning_rate*db2
    w1-=learning_rate*dw1+k*sign(w1)
    b1-=learning_rate*db1
    mp['w1']=w1
    mp['b1']=b1
    mp['w2']=w2
    mp['b2']=b2
def mlp_fit(X,Y):
    global mp
    mp={}
    XX=X.copy()
    YY=Y.copy()
    w1=(random.randn(input_size,output_size)*0.01).T
    b1=(random.randn(1,output_size)*0.01).T
    w2=(random.randn(output_size,1)*0.01).T
    b2=(random.randn(1,1)*0.01).T
    mp['w1']=w1
    mp['b1']=b1
    mp['w2']=w2
    mp['b2']=b2
    I=list(range(len(XX)))
    LOSS=[]
    for epoch in range(epoch_num):
        loss=0
        random.shuffle(I)
        XX=XX[I]
        YY=YY[I]
        for i in range(0,len(XX),batch_size):
            x=XX[i:i+batch_size].T
            y=YY[i:i+batch_size].reshape(1,-1)
            forward(x)
            loss+=compute_loss(y)
            backward(x,y)
        LOSS.append(loss)
#         print('epoch',epoch,':')
#         print(mp['w1'])
#         print(mp['b1'])
    return LOSS
def mlp_predict(X):
    return np.where(forward(X.T)>0.5,1,0).T

數據標准化:

# StandardScaler
def scaler_fit(X):
    global mean,scale
    mean=X.mean(axis=0)
    scale=X.std(axis=0)
    scale[scale<np.finfo(scale.dtype).eps]=1.0
def scaler_transform(X):
    return (X-mean)/scale

訓練及預測:

def train(X,Y):
    XX=X.copy()
    scaler_fit(XX)
    XX=scaler_transform(XX)
    LOSS=mlp_fit(XX,Y)
    plt.plot(list(range(len(LOSS))),LOSS,color='r')
    plt.show()
def predict(X):
    XX=scaler_transform(X)
    return mlp_predict(XX)
def plot_decision_boundary(X,Y):
    x0_min,x0_max=X[:,0].min()-1,X[:,0].max()+1
    x1_min,x1_max=X[:,1].min()-1,X[:,1].max()+1
    m=500
    x0,x1=np.meshgrid(
        np.linspace(x0_min,x0_max,m),
        np.linspace(x1_min,x1_max,m)
    )
    XX=np.c_[x0.ravel(),x1.ravel()]
    Y_pred=predict(XX)
    Z=Y_pred.reshape(x0.shape)
    plt.contourf(x0,x1,Z,cmap=plt.cm.Spectral)
    plt.scatter(X[:,0],X[:,1],c=Y,cmap=plt.cm.Spectral)
    plt.show()

生成訓練數據:

def generate_data(F,l,r,n,y):
    x=np.linspace(l,r,n)
    X=np.column_stack((x,F(x)))
    Y=np.repeat(y,n)
    return X,Y

主程序:

random.seed(114514)
data_size=200
X1,Y1=generate_data(lambda x:x**2+2*x-2+random.randn(data_size)*0.8,-3,1,data_size,0)
X2,Y2=generate_data(lambda x:-x**2+2*x+2+random.randn(data_size)*0.8,-1,3,data_size,1)
X=np.vstack((X1,X2))
Y=np.hstack((Y1,Y2))
train(X,Y)
plot_decision_boundary(X,Y)

loss曲線及判別界面:

自己的一些思考:

1.關於全連接層的作用,我個人感覺每個神經元就像是一塊“擋板”,將兩類點從左右兩側分隔開,就像上述分類結果中有三條折線,分別對應三個擋板,而激活函數tanh的作用就是將擋板兩側的點往外推,擋板的能量越高(向量范數越大),點受到的作用力就越強,被推的距離就越大

為形象理解,我繪制了原數據通過全連接層之后轉化為三維空間中的點的分布情況,代碼如下:

fig=plt.figure()
ax3=plt.axes(projection='3d')
ax3.set_xlabel("X")
ax3.set_ylabel("Y")
ax3.set_zlabel("Z")
w1=mp['w1']
b1=mp['b1']
w2=mp['w2']
b2=mp['b2']
XX=scaler_transform(X)
z1=w1@XX.T+b1
a1=tanh(z1)
z2=w2@a1+b2
a2=sigmoid(z2) 
Z=a1
ax3 = plt.axes(projection='3d')
ax3.set_xlabel("X")
ax3.set_ylabel("Y") 
ax3.set_zlabel("Z")
ax3.scatter(Z[0],Z[1],Z[2],c=Y,cmap=plt.cm.Spectral)
ax3.view_init(90,0)
plt.show()

ax3 = plt.axes(projection='3d')
ax3.set_xlabel("X")
ax3.set_ylabel("Y")
ax3.set_zlabel("Z")
ax3.scatter(Z[0],Z[1],Z[2],c=Y,cmap=plt.cm.Spectral)
ax3.view_init(0,0)
plt.show()

ax3 = plt.axes(projection='3d')
ax3.set_xlabel("X")
ax3.set_ylabel("Y")
ax3.set_zlabel("Z")
ax3.scatter(Z[0],Z[1],Z[2],c=Y,cmap=plt.cm.Spectral)
ax3.view_init(0,90)
plt.show()


ax3 = plt.axes(projection='3d')
ax3.set_xlabel("X")
ax3.set_ylabel("Y")
ax3.set_zlabel("Z")
ax3.scatter(Z[0],Z[1],Z[2],c=Y,cmap=plt.cm.Spectral)

xx=np.arange(-1,1,0.01)
yy=np.arange(-1,1,0.01)
X2,Y2=np.meshgrid(xx, yy)
Z2=(w2[0,0]*X2+w2[0,1]*Y2+b2[0,0])/(-w2[0,2])
ax3.plot_surface(X2,Y2,Z2,cmap='rainbow')

plt.show()

繪制結果:

可以看出,tanh函數將兩類點分別拉向z=-1及x=-1側,從而使得兩類點可以被線性划分(通過Logistic回歸)

2.第75次訓練時loss曲線突然急劇下降,這點非常有意思,自己暫時沒有搞清楚原因,留待以后探究
3.對w初始化的時候,各個神經元的初始權重要互不相同,否則后面的梯度都是一樣的,可能就無法收斂了(隨機失活或許也可以,不過我還沒試過)
參考資料:深度學習PyTorch極簡入門教程


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM