= 水平分區(根據列屬性按行分)=
舉個簡單例子:一個包含十年發票記錄的表可以被分區為十個不同的分區,每個分區包含的是其中一年的記錄。
水平分區的模式:
- Range(范圍) – 這種模式允許DBA將數據划分不同范圍。例如DBA可以將一個表通過年份划分成三個分區,80年代(1980's)的數據,90年代(1990's)的數據以及任何在2000年(包括2000年)后的數據。
- Hash(哈希) – 這種模式允許DBA通過對表的一個或多個列的Hash Key進行計算,最后通過這個Hash碼不同數值對應的數據區域進行分區。例如DBA可以建立一個對表主鍵進行分區的表。
- Key(鍵值) – Hash模式的一種延伸,這里的Hash Key是MySQL系統產生的。
- List(預定義列表) – 這種模式允許系統通過DBA定義的列表的值所對應的行數據進行分割。例如:DBA建立了一個橫跨三個分區的表,分別根據2004年2005年和2006年值所對應的數據。
- Composite(復合模式) - 很神秘吧,哈哈,其實是以上模式的組合使用而已,就不解釋了。舉例:在初始化已經進行了Range范圍分區的表上,我們可以對其中一個分區再進行hash哈希分區。
垂直分區(按列分):
舉個簡單例子:一個包含了大text和BLOB列的表,這些text和BLOB列又不經常被訪問,這時候就要把這些不經常使用的text和BLOB了划分到另一個分區,在保證它們數據相關性的同時還能提高訪問速度。
分區表和未分區表試驗過程
*創建分區表,按日期的年份拆分
mysql> CREATE TABLE part_tab (
c1 int default NULL,
c2 varchar(30) default NULL,
c3 date default NULL
) engine=myisam PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995), PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) , PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) , PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) , PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) , PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010), PARTITION p11 VALUES LESS THAN MAXVALUE );
注意最后一行,考慮到可能的最大值
*創建未分區表
mysql> create table no_part_tab (
c1 int(11) default NULL,
c2 varchar(30) default NULL,
c3 date default NULL
) engine=myisam;
*通過存儲過程灌入800萬條測試數據
mysql> set sql_mode=''; /* 如果創建存儲過程失敗,則先需設置此變量, bug? */ mysql> delimiter // /* 設定語句終結符為 //,因存儲過程語句用;結束 */
mysql> CREATE PROCEDURE load_part_tab()
begin
declare v int default 0;
while v < 8000000
do
insert into part_tab
values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));
set v = v + 1;
end while;
end
//
mysql> delimiter ;
mysql> call load_part_tab();
Query OK, 1 row affected (8 min 17.75 sec)
mysql> insert into no_part_tab select * from part_tab; //將800萬數據復制到未分區的表no_part_tab 中
Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
* 測試SQL性能
mysql> select count(*) from part_tab where c3 > date('1995-01-01') and c3 < date('1995-12-31');
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (0.55 sec)
mysql> select count(*) from no_part_tab where c3 > date('1995-01-01') and c3 < date('1995-12-31');
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (4.69 sec)
結果表明分區表比未分區表的執行時間少90%。
* 通過explain語句來分析執行情況
mysql > explain select count(*) from no_part_tab where c3 > date('1995-01-01') and c3 < date ('1995-12-31') \G #結尾的\G使得mysql的輸出改為列模式
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: no_part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 8000000 #需要查詢800萬條記錄
Extra: Using where
1 row in set (0.00 sec)
mysql> explain select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31') \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 798458 #只需要查詢798458條記錄
Extra: Using where
1 row in set (0.00 sec)
* 試驗創建索引后情況
mysql> create index idx_of_c3 on no_part_tab (c3);
Query OK, 8000000 rows affected (1 min 18.08 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
mysql> create index idx_of_c3 on part_tab (c3);
Query OK, 8000000 rows affected (1 min 19.19 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
創建索引后的數據庫文件大小列表:
2008-05-24 09:23 8,608 no_part_tab.frm 2008-05-24 09:24 255,999,996 no_part_tab.MYD 2008-05-24 09:24 81,611,776 no_part_tab.MYI 2008-05-24 09:25 0 part_tab#P#p0.MYD 2008-05-24 09:26 1,024 part_tab#P#p0.MYI 2008-05-24 09:26 25,550,656 part_tab#P#p1.MYD 2008-05-24 09:26 8,148,992 part_tab#P#p1.MYI 2008-05-24 09:26 25,620,192 part_tab#P#p10.MYD 2008-05-24 09:26 8,170,496 part_tab#P#p10.MYI 2008-05-24 09:25 0 part_tab#P#p11.MYD 2008-05-24 09:26 1,024 part_tab#P#p11.MYI 2008-05-24 09:26 25,656,512 part_tab#P#p2.MYD 2008-05-24 09:26 8,181,760 part_tab#P#p2.MYI 2008-05-24 09:26 25,586,880 part_tab#P#p3.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p3.MYI 2008-05-24 09:26 25,585,696 part_tab#P#p4.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p4.MYI 2008-05-24 09:26 25,585,216 part_tab#P#p5.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p5.MYI 2008-05-24 09:26 25,655,740 part_tab#P#p6.MYD 2008-05-24 09:26 8,181,760 part_tab#P#p6.MYI 2008-05-24 09:26 25,586,528 part_tab#P#p7.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p7.MYI 2008-05-24 09:26 25,586,752 part_tab#P#p8.MYD 2008-05-24 09:26 8,160,256 part_tab#P#p8.MYI 2008-05-24 09:26 25,585,824 part_tab#P#p9.MYD 2008-05-24 09:26 8,159,232 part_tab#P#p9.MYI 2008-05-24 09:25 8,608 part_tab.frm 2008-05-24 09:25 68 part_tab.par
* 再次測試SQL性能
mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31');
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (2.42 sec) # 為原來4.69 sec 的51%
#重啟mysql ( net stop mysql, net start mysql)后,查詢時間降為0.89 sec,幾乎與分區表相同。
mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31');
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (0.86 sec)
* 更進一步的試驗
** 增加日期范圍
mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1997-12-31');
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (5.42 sec)
mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1997-12-31');
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (2.63 sec)
** 增加未索引字段查詢
mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1996-12-31') and c2='hello';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (11.52 sec)
mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1996-12-31') and c2='hello';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.75 sec)
= 初步結論 =
* 分區和未分區占用文件空間大致相同 (數據和索引文件)
* 如果查詢語句中有未建立索引字段,分區時間遠遠優於未分區時間
* 如果查詢語句中字段建立了索引,分區和未分區的差別縮小,分區略優於未分區。
= 最終結論 =
* 對於大數據量,建議使用分區功能。
* 去除不必要的字段
* 根據手冊, 增加myisam_max_sort_file_size 會增加分區性能( mysql重建索引時允許使用的臨時文件最大大小)
分區命令詳解
* RANGE 類型
CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '', email VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY RANGE (uid) ( PARTITION p0 VALUES LESS THAN (3000000) DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 VALUES LESS THAN (6000000) DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx', PARTITION p2 VALUES LESS THAN (9000000) DATA DIRECTORY = '/data4/data' INDEX DIRECTORY = '/data5/idx', PARTITION p3 VALUES LESS THAN MAXVALUE DATA DIRECTORY = '/data6/data' INDEX DIRECTORY = '/data7/idx' );
在這里,將用戶表分成4個分區,以每300萬條記錄為界限,每個分區都有自己獨立的數據、索引文件的存放目錄,與此同時,這些目錄所在的物理磁盤分區可能也都是完全獨立的,可以提高磁盤IO吞吐量。
* LIST 類型
CREATE TABLE category ( cid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY LIST (cid) ( PARTITION p0 VALUES IN (0,4,8,12) DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 VALUES IN (1,5,9,13) DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx', PARTITION p2 VALUES IN (2,6,10,14) DATA DIRECTORY = '/data4/data' INDEX DIRECTORY = '/data5/idx', PARTITION p3 VALUES IN (3,7,11,15) DATA DIRECTORY = '/data6/data' INDEX DIRECTORY = '/data7/idx' );
分成4個區,數據文件和索引文件單獨存放。
* HASH 類型
CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '', email VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY HASH (uid) PARTITIONS 4 ( PARTITION p0 DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx', PARTITION p2 DATA DIRECTORY = '/data4/data' INDEX DIRECTORY = '/data5/idx', PARTITION p3 DATA DIRECTORY = '/data6/data' INDEX DIRECTORY = '/data7/idx' );
* KEY 類型
CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '', email VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY KEY (uid) PARTITIONS 4 ( PARTITION p0 DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx', PARTITION p2 DATA DIRECTORY = '/data4/data' INDEX DIRECTORY = '/data5/idx', PARTITION p3 DATA DIRECTORY = '/data6/data' INDEX DIRECTORY = '/data7/idx' );
分成4個區,數據文件和索引文件單獨存放。
* 子分區
子分區是針對 RANGE/LIST 類型的分區表中每個分區的再次分割。再次分割可以是 HASH/KEY 等類型。
CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '', email VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2( PARTITION p0 VALUES LESS THAN (3000000) DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 VALUES LESS THAN (6000000) DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx' );
對 RANGE 分區再次進行子分區划分,子分區采用 HASH 類型。
或者
CREATE TABLE users ( uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL DEFAULT '', email VARCHAR(30) NOT NULL DEFAULT '' ) PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2( PARTITION p0 VALUES LESS THAN (3000000) DATA DIRECTORY = '/data0/data' INDEX DIRECTORY = '/data1/idx', PARTITION p1 VALUES LESS THAN (6000000) DATA DIRECTORY = '/data2/data' INDEX DIRECTORY = '/data3/idx' );
對 RANGE 分區再次進行子分區划分,子分區采用 KEY 類型。
分區管理
* 刪除分區
ALERT TABLE users DROP PARTITION p0; #刪除分區 p0
* 重建分區
RANGE 分區重建
ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000)); #將原來的 p0,p1 分區合並起來,放到新的 p0 分區中。
LIST 分區重建
ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));#將原來的 p0,p1 分區合並起來,放到新的 p0 分區中。
HASH/KEY 分區重建
ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2; #用 REORGANIZE 方式重建分區的數量變成2,在這里數量只能減少不能增加。想要增加可以用 ADD PARTITION 方法。
* 新增分區
新增 RANGE 分區
#新增一個RANGE分區
ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (16,17,18,19) DATA DIRECTORY = '/data8/data' INDEX DIRECTORY = '/data9/idx');
新增 HASH/KEY 分區
ALTER TABLE users ADD PARTITION PARTITIONS 8; #將分區總數擴展到8個。
給已有的表加上分區
alter table results partition by RANGE (month(ttime)) (
PARTITION p0 VALUES LESS THAN (1), PARTITION p1 VALUES LESS THAN (2) ,
PARTITION p2 VALUES LESS THAN (3) , PARTITION p3 VALUES LESS THAN (4) ,
PARTITION p4 VALUES LESS THAN (5) , PARTITION p5 VALUES LESS THAN (6) ,
PARTITION p6 VALUES LESS THAN (7) , PARTITION p7 VALUES LESS THAN (8) ,
PARTITION p8 VALUES LESS THAN (9) , PARTITION p9 VALUES LESS THAN (10) ,
PARTITION p10 VALUES LESS THAN (11), PARTITION p11 VALUES LESS THAN (12), PARTITION P12 VALUES LESS THAN (13)
);
默認分區限制分區字段必須是主鍵(PRIMARY KEY)的一部分,為了去除此限制:
[方法1] 使用ID:
mysql> ALTER TABLE np_pk -> PARTITION BY HASH( TO_DAYS(added) ) -> PARTITIONS 4;
#ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function
mysql> ALTER TABLE np_pk -> PARTITION BY HASH(id) -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0
[方法2] 將原有PK去掉生成新PK
mysql> alter table results drop PRIMARY KEY;
Query OK, 5374850 rows affected (7 min 4.05 sec)
Records: 5374850 Duplicates: 0 Warnings: 0
mysql> alter table results add PRIMARY KEY(id, ttime);
Query OK, 5374850 rows affected (7 min 4.05 sec)
Records: 5374850 Duplicates: 0 Warnings: 0