5.7 函數y=Asin(ωx+φ)的圖像和性質


\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【高分突破系列】高一數學上學期同步知識點剖析精品講義與分層練習]
(https://www.zxxk.com/docpack/2783085.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

必修第一冊同步拔高練習,難度3顆星!

模塊導圖

知識剖析

性質

\((1)\)簡諧運動可用函數\(y=A \sin (\omega x+\varphi)\)\(x∈[0,+∞)\)表示,
\(A\)是振幅,周期\(T=\dfrac{2 \pi}{\omega}\),頻率\(f=\dfrac{1}{T}=\dfrac{\omega}{2 \pi}\),相位\(ωx+φ\),初相\(φ\).
 

\((2)\) \(A,ω,φ\)\(f(x)=A \sin (\omega x+\varphi)\)的影響
\(A\)影響函數\(y=f(x)\)的最值,\(ω\)影響周期,\(φ\)影響函數水平位置.

 

函數的變換

平移變換

\(y=f(x) \rightarrow y=f(x \pm a)(a>0)\)\(y=f(x)\)圖像沿\(x\)軸向左(右)平移\(a\)個單位(左加右減);
\(y=f(x) \rightarrow y=f(x) \pm b(b>0)\)\(y=f(x)\)圖像沿\(x\)軸向上(下)平移\(b\)個單位(上加下減).
\(f(x)=3 \sin \left(2 x+\dfrac{\pi}{3}\right)\)向左平移\(\dfrac{\pi}{4}\)個單位,得到的函數不是\(f(x)=3 \sin \left(2 x+\dfrac{\pi}{4}+\dfrac{\pi}{3}\right)\), 而是\(f(x)=3 \sin \left[2\left(x+\dfrac{\pi}{4}\right)+\dfrac{\pi}{3}\right]\).
 

伸縮變換

\(y=f(x)⟶ y=A f(x)(A>0)\)
\(y=f(x)\)圖像橫坐標不變,縱坐標伸長到原來的\(A\)倍(\(A>1\)伸長,\(A<1\)縮短).
\(y=f(x)⟶ y=f(ω x)(ω>0)\)
\(y=f(x)\)圖像縱坐標不變,橫坐標縮到原來的\(\dfrac{1}{\omega}\)倍(\(ω>1\)縮短,\(ω<1\)伸長);

問:怎么理解呢?
若將\(f(x)=3 \sin \left(x+\dfrac{\pi}{3}\right)\)圖像縱坐標不變,橫坐標縮到原來的\(\dfrac{1}{2}\)倍,那得到的函數是\(f(x)=3 \sin \left(2 x+\dfrac{\pi}{3}\right)\)還是\(f(x)=3 \sin \left(\dfrac{1}{2} x+\dfrac{\pi}{3}\right)\)呢?
解析 我們把\(f(x)=3 \sin \left(x+\dfrac{\pi}{3}\right)\)的圖象想象成一條彈簧,若縱坐標不變,橫坐標縮到原來的\(\dfrac{1}{2}\)倍,那說明彈簧被壓縮了,則周期\(T\)變小,\(ω\)會變大(\(T=\dfrac{2 \pi}{\omega}\)\(T\)\(ω\)成反比),即變換后的函數應該是\(f(x)=3 \sin \left(2 x+\dfrac{\pi}{3}\right)\).
 

經典例題

【題型一】函數圖象的變換

【典題1】 將函數\(f(x)=A \sin \left(\omega x+\dfrac{\pi}{6}\right)\)\((A>0, \omega>0)\)的圖象上的點的橫坐標縮短為原來的\(\dfrac{1}{2}\)倍,再向右平移\(\dfrac{\pi}{3}\)個單位得到函數\(g(x)=2 \cos (2 x+\varphi)\)的圖象,則下列說法正確的是(  )
A.函數\(f(x)\)的最小正周期為\(π\)
B.函數\(f(x)\)的單調遞增區間為\(\left[2 k \pi-\dfrac{2 \pi}{3}, 2 k \pi+\dfrac{\pi}{3}\right](k \in Z)\)
C.函數\(f(x)\)的圖象有一條對稱軸為\(x=\dfrac{2 \pi}{3}\)
D.函數\(f(x)\)的圖象有一個對稱中心為\(\left(\dfrac{2 \pi}{3}, 0\right)\)
【解析】函數\(f(x)=A \sin \left(\omega x+\dfrac{\pi}{6}\right)\)\((A>0, \omega>0)\)的圖象上的點的橫坐標縮短為原來的\(\dfrac{1}{2}\)倍,再向右平移\(\dfrac{\pi}{3}\)個單位得到\(f(x)=A \sin \left[2 \omega\left(x-\dfrac{\pi}{3}\right)+\dfrac{\pi}{6}\right]\)\(=A \sin \left(2 \omega x+\dfrac{\pi}{6}-\dfrac{2 \pi \omega}{3}\right)\)的圖象.
\(g(x)=2 \cos (2 x+\varphi)=2 \sin \left(2 x+\varphi+\dfrac{\pi}{2}\right)\)比較
\({\color{Red}{(利用誘導公式轉化同函數名) }}\)
又由於\(A>0\)\(ω>0\),所以\(A=2\)\(ω=1\)
所以\(f(x)=2 \sin \left(x+\dfrac{\pi}{6}\right)\)
故函數\(f(x)\)的周期為\(2π\)\(A\)錯誤;
\(2 k \pi-\dfrac{\pi}{2} \leq x+\dfrac{\pi}{6} \leq 2 k \pi+\dfrac{\pi}{2}, k \in Z\)
解得\(2 k \pi-\dfrac{2 \pi}{3} \leq x \leq 2 k \pi+\dfrac{\pi}{3}, k \in Z\)
所以函數\(f(x)\)單調遞增區間為\(\left[2 k \pi-\dfrac{2 \pi}{3}, 2 k \pi+\dfrac{\pi}{3}\right](k \in Z)\),故\(B\)正確;
由於\(f\left(\dfrac{2 \pi}{3}\right)=2 \sin \dfrac{5 \pi}{6}=1\)
\(f\left(\dfrac{2 \pi}{3}\right)\)取不到最值,
\(\therefore x=\dfrac{2 \pi}{3}\)不是對稱軸,
\(\because f\left(\dfrac{2 \pi}{3}\right) \neq 0\)\(\therefore\left(\dfrac{2 \pi}{3}, 0\right)\)不是對稱中心,即\(C\)\(D\)錯誤.
故選:\(B\)
 

鞏固練習

1(★)將函數\(y=\cos x\)的圖象先左移\(\dfrac{\pi}{4}\),再縱坐標不變,橫坐標縮為原來的\(\dfrac{1}{2}\),所得圖象的解析式為(  )
A.\(y=\sin \left(2 x+\dfrac{\pi}{4}\right)\) \(\qquad \qquad \qquad \qquad\)B.\(y=\sin \left(\dfrac{1}{2} x+\dfrac{3 \pi}{4}\right)\)
C.\(y=\sin \left(\dfrac{1}{2} x+\dfrac{\pi}{4}\right)\) \(\qquad \qquad \qquad \qquad\)D.\(y=\sin \left(2 x+\dfrac{3 \pi}{4}\right)\)
 

2(★)將函數\(f(x)=3 \sin \left(\dfrac{1}{2} x-\varphi\right)\)\(\left(|\varphi|<\dfrac{\pi}{2}\right)\)的圖象向左平移\(\dfrac{\pi}{3}\)個單位長度得到函數\(g(x)\)的圖象.若\(g\left(\dfrac{\pi}{3}\right)=\dfrac{3}{2}\),則\(φ=\)(  )
A.\(-\dfrac{\pi}{4}\) \(\qquad \qquad \qquad \qquad\)B.\(-\dfrac{\pi}{3}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{\pi}{6}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{\pi}{3}\)
 

3(★★)為了得到函數\(f(x)=\sin \left(2 x+\dfrac{3 \pi}{4}\right)\)的圖象,可以將函數\(g(x)=\cos2x\)的圖象(  )
A.向右平移\(\dfrac{\pi}{4}\)個單位\(\qquad \qquad\) B.向左平移\(\dfrac{\pi}{4}\)個單位\(\qquad \qquad\) C.向右平移\(\dfrac{\pi}{8}\)個單位 \(\qquad \qquad\)D.向左平移\(\dfrac{\pi}{8}\)個單位
 

4(★★) 已知函數\(y=\sin (\omega x+\varphi)\)的兩條相鄰的對稱軸的間距為\(\dfrac{\pi}{2}\),現將\(y=\sin(ωx+φ)\)的圖象向左平移\(\dfrac{\pi}{8}\)個單位后得到一個偶函數,則\(φ\)的一個可能取值為(  )
A.\(\dfrac{3 \pi}{4}\) \(\qquad \qquad \qquad \qquad\)B.\(\dfrac{\pi}{4}\) \(\qquad \qquad \qquad \qquad\)C.\(0\)\(\qquad \qquad \qquad \qquad\) D.\(-\dfrac{\pi}{4}\)
 

5(★★)已知函數\(f(x)=\sin (\omega x+\varphi)\)\(\left(\omega>0,|\varphi|<\dfrac{\pi}{2}\right)\)的最小正周期為\(π\),且圖象向右平移\(\dfrac{\pi}{12}\)個單位后得到的函數為偶函數,則\(f(x)\)的圖象(  )
A.關於點\(\left(\dfrac{5 \pi}{12}, 0\right)\)對稱 \(\qquad \qquad \qquad \qquad\)B.關於直線\(x=\dfrac{\pi}{6}\)對稱
C.在\(\left[-\dfrac{\pi}{12}, \dfrac{5 \pi}{12}\right]\)單調遞增 \(\qquad \qquad \qquad \qquad\)D.在\(\left[\dfrac{\pi}{12}, \dfrac{7 \pi}{12}\right]\)單調遞減
 

6(★★★) 將函數\(f(x)=A \sin \left(\omega x+\dfrac{\pi}{6}\right)\)\((A>0, \omega>0)\)的圖象上的點的橫坐標縮短為原來的\(\dfrac{1}{2}\)倍,再向右平移\(\dfrac{\pi}{3}\)個單位得到函數\(g(x)=2\cos(2x+φ)\)的圖象,則下列說法正確的是(  )
A.函數\(f(x)\)的最小正周期為\(π\)
B.函數\(f(x)\)的單調遞增區間為\(\left[2 k \pi-\dfrac{2 \pi}{3}, 2 k \pi+\dfrac{\pi}{3}\right](k \in Z)\)
C.函數\(f(x)\)的圖象有一條對稱軸為\(x=\dfrac{2 \pi}{3}\)
D.函數\(f(x)\)的圖象有一個對稱中心為\(\left(\dfrac{2 \pi}{3}, 0\right)\)
 

答案

  1. \(D\)
  2. \(C\)
  3. \(D\)
  4. \(B\)
  5. \(C\)
  6. \(B\)

【題型二】由函數\(y=Asin(ωx+φ)\)的部分圖象求解析式

【典題1】 已知函數\(f(x)=A \sin (\omega x+\varphi)\)\(\left(A>0, \omega>0,0<|\varphi|<\dfrac{\pi}{2}\right)\)的部分圖象如圖所示,下述四個結論:①\(ω=2\);②\(\varphi=-\dfrac{\pi}{3}\);③\(f\left(x+\dfrac{\pi}{12}\right)\)是奇函數;④\(f\left(x-\dfrac{\pi}{12}\right)\)是偶函數中,其中所有正確結論的編號是 \(\underline{\quad \quad}\) .

【解析】由函數圖象的最值可得\(A=1\)
\(\dfrac{3}{4} T=\dfrac{\pi}{6}-\left(-\dfrac{7 \pi}{12}\right)=\dfrac{3 \pi}{4}\)
解得\(T=π\),所以\(\omega=\dfrac{2 \pi}{T}=2\)
此時\(f(x)=\sin (2 x+\varphi)\)
代入\(\left(-\dfrac{7 \pi}{12}, 1\right)\)\(f\left(-\dfrac{7 \pi}{12}\right)=\sin \left(-\dfrac{7 \pi}{6}+\varphi\right)=1\)
\(\therefore-\dfrac{7 \pi}{6}+\varphi=\dfrac{\pi}{2}+2 k \pi \Rightarrow \varphi=\dfrac{5 \pi}{3}+2 k \pi,\)
\(\because 0<|\varphi|<\dfrac{\pi}{2}\)\(\therefore \varphi=-\dfrac{\pi}{3}\)
\(\therefore f(x)=\sin \left(2 x-\dfrac{\pi}{3}\right)\)
\(∴\)①、②正確;
\(\because f\left(x+\dfrac{\pi}{12}\right)=\sin \left[2\left(x+\dfrac{\pi}{12}\right)-\dfrac{\pi}{3}\right]=\sin \left(2 x-\dfrac{\pi}{6}\right)\)不是奇函數,\(∴\)③錯誤;
\(\because f\left(x-\dfrac{\pi}{12}\right)=\sin \left[2\left(x-\dfrac{\pi}{12}\right)-\dfrac{\pi}{3}\right]\)\(=\sin \left(2 x-\dfrac{\pi}{2}\right)=-\cos 2 x\)
\(\therefore f\left(x-\dfrac{\pi}{12}\right)\)為偶函數,④正確.
綜上知,正確的命題序號是①②④.
【點撥】由函數\(y=A \sin (\omega x+\varphi)+B\)\((A>0, \omega>0)\)的部分圖象求解析式的方法
(1) 求\(A,B\):通過函數最值求解,由\(\left\{\begin{array}{c} f_{\max }=A+B \\ f_{\min }=-A+B \end{array}\right.\)\(A=\dfrac{f_{\max }-f_{\min }}{2}\)\(B=\dfrac{f_{\max }+f_{\min }}{2}\)
(2) 求\(ω\):根據圖象求出周期\(T\),再利用\(T=\dfrac{2 \pi}{\omega}\)求出\(ω\)
(3) 求\(φ\):求出\(A,ω\)后代入函數圖象一最值點,求出\(φ\).
 

【典題2】 已知函數\(f(x)=\sin (\omega x+\varphi)\)\((\omega>0,0<\varphi<\pi)\)\(f(0)=f\left(\dfrac{2}{9} \pi\right)=-f\left(\dfrac{\pi}{3}\right)\),且\(f(x)\)\(\left(\dfrac{\pi}{6}, \dfrac{4 \pi}{9}\right)\)上單調,則函數\(y=f(x)\)的解析式是 \(\underline{\quad \quad}\) .
【解析】 對於函數\(f(x)=\sin (\omega x+\varphi)\)
\(f(0)=f\left(\dfrac{2 \pi}{9}\right)\),可得函數的圖象關於直線\(x=\dfrac{1}{2}\left(0+\dfrac{2 \pi}{9}\right)=\dfrac{\pi}{9}\)對稱;
\(f\left(\dfrac{2 \pi}{9}\right)=-f\left(\dfrac{\pi}{3}\right)\)
可得函數圖象關於點\(\left(\dfrac{\frac{2 \pi}{9}+\frac{\pi}{3}}{2}, 0\right)\)對稱,即\(\left(\dfrac{5 \pi}{18}, 0\right)\)
\(\therefore \dfrac{T}{4}+k T=\dfrac{5 \pi}{18}-\dfrac{\pi}{9}=\dfrac{\pi}{6}\)\(k∈Z\),
解得\(T=\dfrac{2 \pi}{3(4 k+1)}\)
\(\therefore \omega=\dfrac{2 \pi}{T}=3(4 k+1)\)
\(\because f(x)\)\(\left(\dfrac{\pi}{6}, \dfrac{4 \pi}{9}\right)\)上單調
\(\therefore \dfrac{T}{2} \geq \dfrac{4 \pi}{9}-\dfrac{\pi}{6}\),解得\(T>\dfrac{5 \pi}{9}\)
\({\color{Red}{(由單調區間得到周期范圍)}}\)
\(\therefore 0<\omega \leq \dfrac{18}{5}\)
\(\omega=\dfrac{2 \pi}{T}=3(4 k+1)\)\(\therefore \omega=3\)
\(\because\left(\dfrac{5 \pi}{18}, 0\right)\)是對稱中心,\(\therefore f\left(\dfrac{5 \pi}{18}\right)=0\)
\(\sin \left(3 \times \dfrac{5 \pi}{18}+\varphi\right)=0\),又\(\because 0<\varphi<\pi\)\(\therefore \varphi=\dfrac{\pi}{6}\)
\(\therefore f(x)=\sin \left(3 x+\dfrac{\pi}{6}\right)\)
【點撥】
①對於函數\(y=A \sin (\omega x+\varphi)\)
\(f(a)=f(b)\),則\(x=\dfrac{a+b}{2}\)是其對稱軸;
\(f(a)=-f(b)\),則\(\left(\dfrac{a+b}{2}, 0\right)\)是其對稱中心;
②處理三角函數\(f(x)=A \sin (\omega x+\varphi)\),多注意其對稱性,結合圖象進行分析.
 

鞏固練習

1(★)函數\(f(x)=A\sin( ωx+φ)\)(其中\(A>0\)\(ω>0\)\(|\varphi|<\dfrac{\pi}{2}\))的圖象如圖,則此函數表達式為 \(\underline{\quad \quad}\) .

 
 

2(★★) 如圖,函數\(y=A \sin (\omega x+\varphi)\)\(\left(A>0, \omega>0,|\varphi| \leq \dfrac{\pi}{2}\right)\)與坐標軸的三個交點\(P、Q、R\)滿足\(P(1,0)\)\(\angle P Q R=\dfrac{\pi}{4}\)\(M\)\(QR\)的中點,\(P M=\dfrac{\sqrt{34}}{2}\),則\(A\)的值為 \(\underline{\quad \quad}\) .

 

3(★★)已知函數\(f(x)=2 \sin (\omega x+\varphi)\)\((\omega>0,0<\varphi<\pi)\)的部分圖象如圖所示,點\(A(0, \sqrt{3})\)\(B\left(\dfrac{\pi}{3}, 0\right)\),則下列說法中錯誤的是(  )

A.直線\(x=\dfrac{\pi}{12}\)\(f(x)\)圖象的一條對稱軸
B.\(f(x)\)的圖象可由\(g(x)=2 \sin 2 x\)向左平移\(\dfrac{\pi}{3}\)個單位而得到
C.\(f(x)\)的最小正周期為π
D.\(f(x)\)在區間\(\left(-\dfrac{\pi}{3}, \dfrac{\pi}{12}\right)\)上單調遞增
 

4 (★★★)已知函數\(f(x)=A \sin (\omega x+\varphi)+B\)\(\left(A>0, \omega>0,|\varphi|<\dfrac{\pi}{2}\right)\)的部分圖象如圖所示.
(1)求\(f(x)\)的解析式;
(2)求\(f(x)\)的單調遞增區間和對稱中心坐標;
(3)將\(f(x)\)的圖象向左平移$\dfrac{\pi}{6} $個單位,再講橫坐標伸長到原來的\(2\)倍,縱坐標不變,最后將圖象向上平移\(1\)個單位,得到函數\(g(x)\)的圖象,求函數\(y=g(x)\)\(x \in\left[0, \dfrac{7 \pi}{6}\right]\)上的最大值和最小值.

 
 

5 (★★★)如圖是函數\(f(x)=A \sin (\omega x+\varphi)\)\(\left(A>0, \omega>0,0<\varphi<\dfrac{\pi}{2}\right)\)的部分圖象,\(M、N\)是它與\(x\)軸的兩個不同交點,\(D\)\(M、N\)之間的最高點且橫坐標為\(\dfrac{\pi}{4}\),點\(F(0,1)\)是線段\(DM\)的中點.
(1)求函數\(f(x)\)的解析式及\([π,2π]\)上的單調增區間;
(2)若\(x \in\left[-\dfrac{\pi}{12}, \dfrac{5 \pi}{12}\right]\)時,函數\(h(x)=f^2 (x)-\)\(af(x)+1\)的最小值為\(\dfrac{1}{2}\),求實數\(a\)的值.

 
 

參考答案

  1. \(f(x)=3 \sin \left(\dfrac{1}{2} x+\dfrac{\pi}{4}\right)\)
  2. \(5 \sqrt{2}\)
  3. \(B\)
  4. \((1) f(x)=2 \sin \left(2 x+\dfrac{\pi}{3}\right)-1\)
    \((2)\)單調遞增區間\(\left[k \pi-\dfrac{5 \pi}{12}, k \pi+\dfrac{\pi}{12}\right], k \in Z\),對稱中心坐標\(\left(\dfrac{k \pi}{2}-\dfrac{\pi}{6},-1\right), k \in Z\)
    \((3)\)最小值\(-2\),最大值\(\sqrt{3}\).
  5. \(\text { (1) } f(x)=2 \sin \left(x+\dfrac{\pi}{4}\right),\left[\dfrac{5 \pi}{4}, 2 \pi\right]\)
    \(\text { (2) } \dfrac{3}{2}\)
     

【題型三】三角函數模型的簡單應用一

【典題1】已知函數\(f(x)=\sin ^{2} x-2 \sqrt{3} \sin x \cos x+\sin \left(x+\dfrac{\pi}{4}\right) \sin \left(x-\dfrac{\pi}{4}\right)\)
(1)求\(f(x)\)的最小值並寫出此時\(x\)的取值集合;
(2)若\(x∈[0 ,π]\),求出\(f(x)\)的單調減區間.

【解析】(1)由於\(f(x)=\sin ^{2} x-2 \sqrt{3} \sin x \cos x+\sin \left(x+\dfrac{\pi}{4}\right) \sin \left(x-\dfrac{\pi}{4}\right)\)
\(=\dfrac{1-\cos 2 x}{2}-\sqrt{3} \sin 2 x+\dfrac{\sqrt{2}}{2}(\sin x+\cos x) \dfrac{\sqrt{2}}{2}(\sin x-\cos x)\)
\({\color{Red} {(二倍角公式、兩角和差公式)}}\)
\(=\dfrac{1-\cos 2 x}{2}-\sqrt{3} \sin 2 x-\dfrac{\cos 2 x}{2}\)
\(=\dfrac{1}{2}-(\sqrt{3} \sin 2 x+\cos 2 x)\)
\({\color{Red} {(輔助角公式)}}\)
\(=\dfrac{1}{2}-2 \sin \left(2 x+\dfrac{\pi}{6}\right)\)
\(2 x+\dfrac{\pi}{6}=2 k \pi+\dfrac{\pi}{2}\)\(k∈Z\),解得\(x=k \pi+\dfrac{\pi}{6}\)\(k∈Z\)
可得\(f(x)\)的最小值為\(-\dfrac{3}{2}\)
此時\(x\)的取值集合為\(\left\{x \mid x=\dfrac{\pi}{6}+k \pi, k \in Z\right\}\)
(2)由\(2 k \pi-\dfrac{\pi}{2} \leq 2 x+\dfrac{\pi}{6} \leq 2 k \pi+\dfrac{\pi}{2}\)\(k∈Z\)
可得\(k \pi-\dfrac{\pi}{3} \leq x \leq k \pi+\dfrac{\pi}{6}\)\(k∈Z\)
所以\(f(x)\)的單調減區間為\(\left[k \pi-\dfrac{\pi}{3}, k \pi+\dfrac{\pi}{6}\right]\)\(k∈Z\)
因為\(x∈[0 ,π]\),當\(k=0\)時,減區間為\(\left[0, \dfrac{\pi}{6}\right]\)
\(k=1\)時,減區間為\(\left[\dfrac{2 \pi}{3}, \pi\right]\)
綜上,\(x∈[0 ,π]\)時的單調減區間為\(\left[0, \dfrac{\pi}{6}\right]\)\(\left[\dfrac{2 \pi}{3}, \pi\right]\)
【點撥】
① 解析式的化簡中用積化和差公式\(\sin \left(x+\dfrac{\pi}{4}\right) \sin \left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\left[\cos \dfrac{\pi}{2}-\cos 2 x\right]=-\dfrac{1}{2} \cos 2 x\)更簡潔些;
②本題通過各種公式(兩角和差公式、倍角公式、積化和差公式等)轉化,最終把函數的解析式轉化為\(f(x)=A \sin (\omega x+\varphi)+B\)\(f(x)=A\cos(ωx+φ)+B\)的形式求解函數的各性質(單調性、對稱性、周期、最值等).
 

【典題2】已知函數\(f(x)=4 \sin ^{2}\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right) \sin x+(\cos x+\sin x)(\cos x-\sin x)-1\)
(1)求\(f(x)\)的對稱中心;
(2)設常數\(ω>0\),若函數\(y=f(ωx)\)在區間\(\left[-\dfrac{\pi}{2}, \dfrac{2 \pi}{3}\right]\)上是增函數,求\(ω\)的取值范圍;
(3)若函數\(g(x)=\dfrac{1}{2}\left[f(2 x)+a f(x)-a f\left(\dfrac{\pi}{2}-x\right)-a\right]-1\)在區間\(\left[-\dfrac{\pi}{4}, \dfrac{\pi}{2}\right]\)上的最大值為\(2\),求\(a\)的值.
【解析】(1) \({\color{Red} {(函數解析式轉化為f(x)=Asin(ωx+φ)+B形式)}}\)
\(f(x)=2\left[1-\cos \left(\dfrac{\pi}{2}+x\right)\right] \cdot \sin x+\cos ^{2} x-\sin ^{2} x-1\)
\(=\sin x(2+2 \sin x)+1-2 \sin ^{2} x-1=2 \sin x\)
所以對稱中心\((kπ ,0)\)\(k∈Z\)
(2)\(∵f(ωx)=2\sinωx\),由\(-\dfrac{\pi}{2}+2 k \pi \leq \omega x \leq \dfrac{\pi}{2}+2 k \pi\)
解得\(-\dfrac{\pi}{2 \omega}+\dfrac{2 k \pi}{\omega} \leq x \leq \dfrac{\pi}{2 \omega}+\dfrac{2 k \pi}{\omega}\)
\(∴f(ωx)\)的增區間為\(\left[-\dfrac{\pi}{2 \omega}+\dfrac{2 k \pi}{\omega}, \dfrac{\pi}{2 \omega}+\dfrac{2 k \pi}{\omega}\right]\) ,\(k∈Z\)
\(∵f(ωx)\)\(\left[-\dfrac{\pi}{2}, \dfrac{2 \pi}{3}\right]\)上是增函數,
\({\color{Red} {(\left[-\dfrac{\pi}{2}, \dfrac{2 \pi}{3}\right]是函數f(ωx)增區間的子集,而0 \in\left[-\dfrac{\pi}{2}, \dfrac{2 \pi}{3}\right],故k=0)}}\)
\(∴\)\(k=0\)時,有\(\left[-\dfrac{\pi}{2}, \dfrac{2 \pi}{3}\right] \subseteq\left[-\dfrac{\pi}{2 \omega}, \dfrac{\pi}{2 \omega}\right]\)
\(\therefore\left\{\begin{array}{l} \omega>0 \\ -\dfrac{\pi}{2 \omega} \leq-\dfrac{\pi}{2} \\ \dfrac{\pi}{2 \omega} \geq \dfrac{2 \pi}{3} \end{array}\right.\),解得\(0<\omega \leq \dfrac{3}{4}\)
\(∴ω\)的取值范圍是\(\left(0, \dfrac{3}{4}\right]\)
(3)\(g(x)=2 \sin x \cos x+a(\sin x-\cos x)-\dfrac{1}{2} a-1\)
\({\color{Red} {(注意(\sin x-\cos x)^{2}=1-\sin 2 x,(\sin x+\cos x)^{2}=1+\sin 2 x)}}\)
\(\sin x-\cos x=t\)
\(t=\sin x-\cos x=\sqrt{2} \sin \left(x-\dfrac{\pi}{4}\right)\)
\(\because x \in\left[-\dfrac{\pi}{4}, \dfrac{\pi}{2}\right]\)\(\therefore x-\dfrac{\pi}{4} \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{4}\right]\)\(\therefore-\sqrt{2} \leq t \leq 1\)
\(\sin2x=1-t^2\)
\(y=1-t^{2}+a t-\dfrac{1}{2} a-1=-\left(t-\dfrac{a}{2}\right)^{2}+\dfrac{a^{2}}{4}-\dfrac{1}{2} a\)
\({\color{Red} {(問題轉化為動軸定區間最值問題,分對稱軸t=\dfrac{a}{2}在區間[-\sqrt{2}, 1]左中右)}}\)
①當\(\dfrac{a}{2}<-\sqrt{2}\)時,即\(a<-2 \sqrt{2}\)時,\(y_{\max }=-\left(-\sqrt{2}-\dfrac{a}{2}\right)^{2}+\dfrac{a^{2}}{4}-\dfrac{a}{2}=-\sqrt{2} a-\dfrac{a}{2}-2\)
\(-\sqrt{2} a-\dfrac{a}{2}-2=2\),解得\(a=-\dfrac{8}{2 \sqrt{2}+1}\)(舍).
②當\(-\sqrt{2} \leq \dfrac{a}{2} \leq 1\)時,即\(-2 \sqrt{2} \leq a \leq 2\)時,\(y_{\max }=\dfrac{a^{2}}{4}-\dfrac{a}{2}\)
\(\dfrac{a^{2}}{4}-\dfrac{a}{2}=2\),解得\(a=-2\)\(a=4\)(舍),
③當\(\dfrac{a}{2}>1\)時,即\(a>2\)時,在\(t=1\)處,\(y_{\max }=\dfrac{a}{2}-1\)
\(\dfrac{a}{2}-1=2\),解得\(a=6\)
綜上所述\(a=-2\)\(6\)
 

【典題3】已知函數\(f(x)=\sin ^{4} x+\cos ^{4} x+a\sin x \cos x(a \in R)\)
(1)當\(a=0\)時,求函數\(y=f(x)\)的單調減區間;
(2)設方程\(f(x)-a\sin2x-1=0\)\(\left(0, \dfrac{\pi}{2}\right)\)內有兩個相異的實數根\(x_1、x_2\),求實數\(a\)的取值范圍及\(x_1+x_2\)的值;
(3)若對任意實數\(x\)\(f(x)≥0\)恆成立,求實數\(a\)的取值范圍.
【解析】(1) \(f(x)=\sin ^{4} x+\cos ^{4} x+a \sin x \cos x\) 
\(=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x+a \sin x \cos x\)
\(=1-\dfrac{1}{2} \sin ^{2} 2 x+\dfrac{1}{2} a \sin 2 x\)
\(a=0\)時,\(f(x)=1-\dfrac{1}{2} \sin ^{2} 2 x=1-\dfrac{1-\cos 4 x}{4}=\dfrac{1}{4} \cos 4 x+\dfrac{3}{4}\)
\({\color{Red} {(函數化為f(x)=Acos(ωx+φ)+B)}}\)
\(2kπ≤4x≤π+2kπ\),得\(\dfrac{k \pi}{2} \leq x \leq \dfrac{\pi}{4}+\dfrac{k \pi}{2}\)\(k∈Z\)
\(∴\)\(a=0\)時,函數\(y=f(x)\)的單調減區間為\(\left[\dfrac{k \pi}{2}, \dfrac{k \pi}{2}+\dfrac{\pi}{4}\right]\)\(k∈Z\)
(2) \({\color{Red} {(將問題逐步等價轉化,化成“最簡問題”)}}\)
方程\(f(x)-a\sin2x-1=0\)\(\left(0, \dfrac{\pi}{2}\right)\)內有兩個相異的實數根\(x_1、x_2\)
\(1-\dfrac{1}{2} \sin ^{2} 2 x+\dfrac{1}{2} a \sin 2 x-a \sin 2 x-1=0\)\(\left(0, \dfrac{\pi}{2}\right)\)內有兩個相異的實數根\(x_1 、x_2\)
也就是\(\sin ^{2} 2 x+a \sin 2 x=0\)\(\left(0, \dfrac{\pi}{2}\right)\)內有兩個相異的實數根\(x_1 、x_2\)
\(x \in\left(0, \dfrac{\pi}{2}\right)\)時,\(\sin2x≠0\)
\(a=-\sin2x\)\(\left(0, \dfrac{\pi}{2}\right)\)內有兩個相異的實數根\(x_1 、x_2\)
\({\color{Red} {(數形結合,y=a與y=-\sin2x在\left(0, \dfrac{\pi}{2}\right)內相交於兩點)}}\)
易得\(y=-\sin2x\)\(\left(0, \dfrac{\pi}{2}\right)\)內的值域是\((-1,0)\)
\(-1<a<0\),此時\(x_{1}+x_{2}=\dfrac{\pi}{2}\)
(3)若對任意實數\(x\)\(f(x)≥0\)恆成立,
\(1-\dfrac{1}{2} \sin ^{2} 2 x+\dfrac{1}{2} \operatorname{asin} 2 x \geq 0\)恆成立,
\(\sin^2 2x-a\sin2x-2≤0\)恆成立,
\({\color{Red} {(換元法化為二次函數恆成立問題)}}\)
\(t=\sin2x(-1≤t≤1)\),則\(t^2-at-2≤0\)恆成立.
可得\(\left\{\begin{array}{l} (-1)^{2}+a-2 \leq 0 \\ 1^{2}-a-2 \leq 0 \end{array}\right.\),即\(-1≤a≤1\)
\(∴\)實數\(a\)的取值范圍是\([-1 ,1]\)
 

鞏固練習

1(★★)已知函數\(f(x)=\sqrt{3} \sin x \cos x-\sin ^{2} x\)
(1)求函數\(f(x)\)的最小正周期;
(2)求函數\(f(x)\)的單調增區間;
(3)求函數\(f(x)\)在區間\(\left[0, \dfrac{\pi}{2}\right]\)上的最大值.
 
 

2(★★)已知函數\(f(x)=\sin (\pi-\omega x) \cos \omega x-\cos ^{2}\left(\omega x+\dfrac{\pi}{4}\right)(\omega>0)\)的最小正周期為\(π\)
(1)求\(f(x)\)圖象的對稱軸方程;
(2)將\(f(x)\)圖象向右平移\(\dfrac{\pi}{6}\)個單位長度后,得到函數\(g(x)\),求函數\(g(x)\)\(\left[0, \dfrac{\pi}{2}\right]\)上的值域.
 
 

3(★★★) 已知函數\(f(x)=\dfrac{1}{2} \cos 2 x+\sin x \cos x\),其中\(x∈R\)
(1)求使\(f(x) \geq \dfrac{1}{2}\)\(x\)的取值范圍;
(2)若函數\(g(x)=\dfrac{\sqrt{2}}{2} \sin \left(2 x+\dfrac{3 \pi}{4}\right)\),且對任意的\(0≤x_1<x_2≤t\),恆有\(f(x_1 )-f(x_2 )<g(x_1 )-g(x_2)\)成立,求實數\(t\)的最大值.
 
 

4(★★★★)已知函數\(f(x)=\sqrt{3} \sin (2 \omega x+\varphi)+1\)\(\left(\omega>0,-\dfrac{\pi}{2}<\varphi<\dfrac{\pi}{2}\right)\),函數\(f(x)\)的圖象經過點\(\left(-\dfrac{\pi}{12}, 1\right)\)\(f(x)\)的最小正周期為\(\dfrac{\pi}{2}\)
(1)求函數\(f(x)\)的解析式;
(2)將函數\(y=f(x)\)圖象上所有的點向下平移\(1\)個單位長度,再函數圖象上所有點的橫坐標變為原來的\(2\)倍,縱坐標不變,再將圖象上所有的點的橫坐標不變,縱坐標變為原來的\(\dfrac{2 \sqrt{3}}{3}\)倍,得到函數\(y=h(x)\)圖象,令函數\(g(x)=h(x)+1\),區間\([a ,b]\)(\(a ,b∈R\)\(a<b\))滿足:\(y=g(x)\)\([a ,b]\)上至少有\(30\)個零點,在所有滿足上述條件的\([a ,b]\)中,求\(b-a\)的最小值.
(3)若\(m\left[1+\sqrt{3}\left(f\left(\dfrac{x}{8}-\dfrac{\pi}{12}\right)-1\right)\right]+\dfrac{1}{2}+\dfrac{3}{2} \cos x \leq 0\)對任意\(x∈[0 ,2π]\)恆成立,求實數\(m\)的取值范圍.
 
 
 
 

參考答案

  1. \((1) π\) \(\text { (2) }\left[-\dfrac{\pi}{3}+k \pi, \dfrac{\pi}{6}+k \pi\right], \quad(k \in Z)\) \(\text { (3) } \dfrac{1}{2}\)

  2. \(\text { (1) } x=\dfrac{k \pi}{2}+\dfrac{\pi}{4}(k \in Z)\) \(\text { (2) }\left[-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}, \dfrac{1}{2}\right]\)

  3. \(\text { (1) }\left[k \pi, k \pi+\dfrac{\pi}{4}\right], \quad k \in Z\) \(\text { (2) } \dfrac{\pi}{4}\)

  4. \(\text { (1) } f(x)=\sqrt{3} \sin \left(4 x+\dfrac{\pi}{3}\right)+1\)

    \(\text { (2) } \dfrac{43 \pi}{3}\) \(\text { (3) }(-\infty,-2]\)

 

【題型四】三角函數模型的簡單應用二

【典題1】 如圖,一個水輪的半徑為\(6m\),水輪軸心\(O\)距離水面的高度為\(3m\),已知水輪按逆時針勻速轉動,每分鍾轉動\(5\)圈,當水輪上點\(P\)從水中浮現時的起始(圖中點\(P_0\))開始計時,記\(f(t)\)為點\(P\)距離水面的高度關於時間\(t(s)\)的函數,則下列結論正確的是(  )
A.\(f(3)=9\)
B.\(f(1)=f(7)\)
C.若\(f(t)≥6\),則\(t \in[2+12 k, 5+12 k](k \in N)\)
D.不論\(t\)為何值,\(f(t)+f(t+4)+f(t+8)\)是定值

【解析】\({\color{Red}{方法一 幾何法}}\)
圖中\(PB⊥\)水面,\(OA⊥PB\)

\({\color{Red}{(由圖f(t)=PA=PA+3,則需了解PA與t的關系,從幾何角度求解)}}\)
\(∵\)每分鍾轉動\(5\)
\(∴OP\)每秒鍾內所轉過的角度為\(\dfrac{5 \times 2 \pi}{60}=\dfrac{\pi}{6}\)
\({\color{Red}{(角速度)}}\)
\(t\)秒轉過的角度\(\dfrac{\pi}{6} t\),即\(\angle P_{0} O P=\dfrac{\pi}{6} t\)
如上圖依題意可知\(\angle P_{0} O A=\dfrac{\pi}{6}\)
\(\alpha=\dfrac{\pi}{6} t-\dfrac{\pi}{6}\)
\(\text { Rt } \Delta P O A\)中,\(P A=O P \sin \alpha=6 \sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right)\)
\(\therefore f(t)=P B=P A+A B=6 \sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right)+3\)
對於\(A\)\(f(3)=6 \sin \left(\dfrac{\pi}{6} \times 3-\dfrac{\pi}{6}\right)+3=3 \sqrt{3}+3\),即\(A\)錯誤;
對於\(B\)\(f(1)=6 \sin \left(\dfrac{\pi}{6} \times 1-\dfrac{\pi}{6}\right)+3=3\)\(f(7)=6 \sin \left(\dfrac{\pi}{6} \times 7-\dfrac{\pi}{6}\right)+3=3\)
\(B\)正確;
\({\color{Red}{(或確定x=\dfrac{1+7}{2}=4是函數對稱軸也行)}}\)
對於\(C\),因為\(f(t)≥6\)
所以\(6 \sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right)+3 \geq 6\)
\(\sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right) \geq \dfrac{1}{2}\)
所以\(\dfrac{\pi}{6} t-\dfrac{\pi}{6} \in\left[\dfrac{\pi}{6}+2 k \pi, \dfrac{5 \pi}{6}+2 k \pi\right]\)
解得\(t∈[2+12k,6+12k],k∈N\)
\(C\)錯誤;
對於\(D\)\(f(t)+f(t+4)+f(t+8)\)
\(=6 \sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right)+6 \sin \left(\dfrac{\pi}{6} t+\dfrac{\pi}{2}\right)+6 \sin \left(\dfrac{\pi}{6} t+\dfrac{7 \pi}{6}\right)+9\)
\(=6\left[\sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right)+\cos \dfrac{\pi}{6} t-\sin \left(\dfrac{\pi}{6} t+\dfrac{\pi}{6}\right)\right]+9\)
因為\(\sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right)+\cos \dfrac{\pi}{6} t-\sin \left(\dfrac{\pi}{6} t+\dfrac{\pi}{6}\right)=0\)
所以\(f(t)+f(t+4)+f(t+8)=9\)
\(D\)正確.
故選:\(BD\)
\({\color{Red}{方法二 待定系數法}}\)
可知\(f(x)\)符合三角函數模型,
\(f(t)=Asin(ωx+φ)+B(A>0)\)
依題意可知\(f(t)\)的最大值為\(9\),最小為\(-3\)
\(∴A+B=9\),且\(-A+B=-3\)
可得\(A=6\)\(B=3\)
\(∵\)每分鍾轉動\(5\)圈,
\(∴1\)圈要\(12\)秒,即\(T=12s\)
\(\omega=\dfrac{2 \pi}{T}=\dfrac{\pi}{6}\),得\(f(t)=6 \sin \left(\dfrac{\pi}{6} t+\varphi\right)+3\)
\({\color{Red}{(也可由OP每秒鍾內所轉過的角度為\dfrac{5 \times 2 \pi}{60}=\dfrac{\pi}{6}得\omega=\dfrac{\pi}{6}}}\)
依題意可知\(f(0)=0\)
\(\sin \varphi=-\dfrac{1}{2}\),取\(\varphi=-\dfrac{\pi}{6}\)
\({\color{Red}{(得到φ的一個值便可)}}\)
故所求的函數解析式為\(f(t)=6 \sin \left(\dfrac{\pi}{6} t-\dfrac{\pi}{6}\right)+3\)
接下來如同方法一.

【點撥】
① 方法一利用幾何性質求出\(f(t)\)(即圖中的\(PB\))與t之間的關系;
② 方法二是根據題意確定符合三角函數模型,則用待定系數法設函數\(f(t)=A\sin(ωx+φ)+B\),根據題意由最大值和最小值求出\(A,B\)的值,根據周期性由\(T=\dfrac{2 \pi}{\omega}\)求出\(ω\),注意一個特殊情況代入一個點求出\(φ\).
 
 

【典題2】 某公司欲生產一款迎春工藝品回饋消費者,工藝品的平面設計如圖所示,該工藝品由直角\(△ABC\)和以\(BC\)為直徑的半圓拼接而成,點\(P\)為半圈上一點(異於\(B,C\)),點\(H\)在線段\(AB\)上,且滿足\(CH⊥AB\).已知\(∠ACB=90°\)\(AB=1dm\),設\(∠ABC=θ\)
(1)為了使工藝禮品達到最佳觀賞效果,需滿足\(∠ABC=∠PCB\),且\(CA+CP\)達到最大.當\(θ\)為何值時,工藝禮品達到最佳觀賞效果;
(2)為了工藝禮品達到最佳穩定性便於收藏,需滿足\(∠PBA=60°\),且\(CH+CP\)達到最大.當\(θ\)為何值時,\(CH+CP\)取得最大值,並求該最大值.

【解析】依題意\(∠ABC=∠PCB=θ\)
則在直角\(△ABC\)中,\(AC=\sinθ,BC=\cosθ\)
在直角\(△PBC\)中,\(P C=B C \cdot \cos \theta=\cos ^{2} \theta\)\(P B=B C \cdot \sin \theta=\sin \theta \cos \theta\)
\({\color{Red}{(用變量θ表示CA+CP,利用函數最值方法求解)}}\)
(1)\(A C+C P=\sin \theta+\cos ^{2} \theta\)\(=\sin \theta+1-\sin ^{2} \theta=-\sin ^{2} \theta+\sin \theta+1\)\(\theta \in\left(0, \dfrac{\pi}{2}\right)\)
所以當\(\sin \theta=\dfrac{1}{2}\),即\(\theta=\dfrac{\pi}{6}\)\(AC+CP\)的最大值為\(\dfrac{5}{4}\)
(2)在直角\(△ABC\)中,由\(S_{\triangle A B C}=\dfrac{1}{2} C A \cdot C B=\dfrac{1}{2} A B \cdot C H,\)\({\color{Red}{(等積法)}}\)
可得\(C H=\dfrac{\sin \theta \cdot \cos \theta}{1}=\sin \theta \cdot \cos \theta\)
在直角\(△PBC\)中,
\(P C=B C \cdot \sin \left(\dfrac{\pi}{3}-\theta\right)\)\(=\cos \theta \cdot\left(\sin \dfrac{\pi}{3} \cos \theta-\cos \dfrac{\pi}{3} \sin \theta\right)\)\(=\dfrac{\sqrt{3}}{2} \cos ^{2} \theta-\dfrac{1}{2} \cos \theta \sin \theta\)
所以\(C H+C P=\dfrac{\sqrt{3}}{2} \cos ^{2} \theta+\dfrac{1}{2} \cos \theta \sin \theta\)
\(=\dfrac{1}{4} \sin 2 \theta+\dfrac{\sqrt{3}}{4} \cos 2 \theta+\dfrac{\sqrt{3}}{4}=\dfrac{1}{2} \sin \left(2 \theta+\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{4}\)\(\theta \in\left(0, \dfrac{\pi}{2}\right)\)
\({\color{Red}{(函數化為f(x)=A \sin (\omega x+\varphi)+B求最值)}}\)
所以當\(\theta=\dfrac{\pi}{12}\)\(CH+CP\)達到最大,最大值為\(\dfrac{1}{2}+\dfrac{\sqrt{3}}{4}\)
【點撥】
① 利用直角三角形等幾何性質用\(θ\)表示各線段長度;
② 題目中體現了函數思想,在求解實際問題中,特別要注意自變量θ的取值范圍.
 
 

鞏固練習

1(★★) 水車在古代是進行灌溉引水的工具,是人類的一項古老的發明,也是人類利用自然和改造自然的象征.如圖是一個半徑為\(R\)的水車,一個水斗從點\(A(3 \sqrt{3},-3)\)出發,沿圓周按逆時針方向勻速旋轉,且旋轉一周用時\(60\)秒.經過\(t\)秒后,水斗旋轉到\(P\)點,設\(P\)的坐標為\((x,y)\),其縱坐標滿足\(y=f(t)=R \sin (\omega t+\varphi)\left(t \geq 0, \omega>0,|\varphi|<\dfrac{\pi}{2}\right)\).則下列敘述錯誤的是(  )

A.\(R=6, \omega=\dfrac{\pi}{30}, \varphi=-\dfrac{\pi}{6}\)
B.當\(t∈[35,55]\)時,點\(P\)\(x\)軸的距離的最大值為\(6\)
C.當\(t∈[10,25]\)時,函數\(y=f(t)\)單調遞減
D.當\(t=20\)時,\(|P A|=6 \sqrt{3}\)
 
 

2(★★)某游樂場中半徑為\(30\)米的摩天輪逆時針(固定從一側觀察)勻速旋轉,每\(5\)分鍾轉一圈,其最低點離底面\(5\)米,如果以你從最低點登上摩天輪的時刻開始計時,那么你與底面的距離高度\(y\)(米)隨時間\(t\)(秒)變化的關系式為 \(\underline{\quad \quad}\) .

 
 

3(★★) 如圖,已知扇形\(AOB\)的半徑為\(1\),中心角為\(60°\),四邊形\(PQRS\)是扇形的內接矩形,\(P\)\(\widehat{A B}\)上一動點,問:點\(P\)在怎樣的位置時,矩形\(PQRS\)的面積最大?並求出這個最大值.

 
 

4(★★★) 如圖,某正方形公園\(ABCD\),在\(ABD\)區域內准備修建三角形花園\(BMN\),滿足\(MN\)\(AB\)平行(點\(N\)\(BD\)上),且\(AB=AD=BM=2\)(單位:百米).設\(∠ABM=θ\)\(△BMN\)的面積為\(S\)(單位:百米平方).
(1)求\(S\)關於\(θ\)的函數解析式
(2)求\(S(θ)\)的最大值,並求出取到最大值時\(θ\)的值.

 
 

5(★★★)某農場有一塊扇形農田,如圖所示.已知扇形\(OAB\)的圓心角為\(\dfrac{\pi}{4}\),半徑為\(80\)米,點\(P\)\(\widehat{A B}\)上,\(PC⊥OA\)\(C\)\(PD⊥OB\)\(D\).現要在\(△OPC\)\(△OPD\)區域中分別種植甲、乙兩種蔬菜,且甲、乙兩種蔬菜單位面積年產值之比為\(\text { 1: } \sqrt{3}\).設\(∠AOP=θ\)\(0<\theta<\dfrac{\pi}{4}\)
(1)用\(θ\)分別表示\(△OPC\)\(△OPD\)的面積;
(2)當\(θ\)為何值時,讀農場種植甲、乙兩種蔬菜的年總產值最大?

 
 

6(★★★★) 如圖,半圓的直徑\(AB=2\)\(O\)為圓心,\(C\)\(D\)為半圓上的點.
(1)請你為\(C\)點確定位置,使\(△ABC\)的周長最大,並說明理由;
(2)已知\(AD=DC\),設\(∠ABD=θ\),當\(θ\)為何值時,
①四邊形\(ABCD\)的周長最大,最大值是多少?
②四邊形\(ABCD\)的面積最大,最大值是多少?

 
 
 
 

參考答案

  1. \(C\)
  2. \(y=30 \sin \left(\dfrac{\pi}{150} t-\dfrac{\pi}{2}\right)+35\)
  3. \(P\)\(\widehat{A B}\)中點時,矩形\(PQRS\)的面積取到最大值\(\dfrac{\sqrt{3}}{6}\)
  4. \(\text { (1) } S(\theta)=2 \sin \theta(\cos \theta-\sin \theta), \quad \theta \in\left(0, \dfrac{\pi}{4}\right)\)
    \((2) S(θ)\)的最大值為\(\sqrt{2}-1\)百米平方,此時\(\theta=\dfrac{\pi}{8}\)
  5. \((1) △OPC\)\(△OPD\)的面積分別為\(1600\sin2θ\)平方米,\(1600\cos2θ\)平方米;
    \((2)\)\(\theta=\dfrac{\pi}{12}\)時,該農場種植甲,乙兩種蔬菜的年總產值量大.
  6. \(\text { (1) } 2 \sqrt{2}+2\),此時點\(C\)是半圓的中點
    \((2)\)\(\theta=\dfrac{\pi}{6}\)時,最大值是\(5\). ② \(\theta=\dfrac{\pi}{6}\)時,最大值是\(\dfrac{3 \sqrt{3}}{4}\).


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM