STM32學習---移植UC0S以及使用RTC輸出時間日期


STM32學習---移植UC0S以及使用RTC輸出時間日期

一、通過CUBEMX基於HAL庫移植uC/OS-III

1、使用cubemx創建工程

配置RCC

1638630463919

配置SYS

1638630525526

配置USART1,要通過串口輸出內容

1638630691579

再PC13輸出

1638630727261

設置生成代碼

1638630747843

創建代碼

2、移植ucos系統

可以到官網下載代碼http://micrium.com/downloadcenter/注意選擇對應的版本

也可通過這個百度雲地址下載鏈接:https://pan.baidu.com/s/1Btj7foEXdXjjJWoZQsN-OQ
提取碼:mleh

1.在生成的keil工程文件夾f103c8_uCOSIII_1_test按照如圖所示添加六個新的組: bsp、uCOSIII_CPU、 uCOSIII_LIB、 uCOSIII_Ports、 uCOSIII_Source、 OS_cfg

1638631380948

2.添加文件到分組

1將下載的文件中的代碼依次復制到相應的組中去

1uCOSIII_CPU 組件, 點擊 Add Files…按鈕,將文件目錄跳轉至: UCOSIII/uC-CPU, 選擇 ALL files 文件類型,將其中的三個文件點擊 Add 添加, 然后再打開: ARM-Cortex-M3\RealView, 同樣選擇 ALL files 文件類型,將三個文件添加進 uCOSIII_CPU 組
2添加 uCOSIII_LIB 組件文件:選擇 uCOSIII_LIB 組,點擊 Add Files…按鈕, 將文件目錄跳轉至: UCOSIII/uCLIB

3選擇 ALL files 文件類型,將其中的九個文件添加進 uCOSIII_LIB 組;然后繼續打開: Ports/ARM-Cortex-M3/Realview, 添加 lib_mem_a.asm 文件

4選擇 uCOSIII_Ports 組,點擊 Add Files…按鈕, 將文件目錄調整至: UCOSIII/UcosIII/Ports/RAM-Cortex-M3/Generic/RealView。選擇 ALL files 文件類型, 將其中三個文件添加進 uCOSIII_Ports 組
5選擇uCOSIII_Sourc組,點擊Add Files…按鈕, 將文件目錄調整至: UCOSIII/UcosIII/Source。選擇 ALL files 文件類型, 將其中二十個文件添加進 uCOSIII_Sourc 組。

6選擇 OS_cfg 組,點擊 Add Files…按鈕, 將文件目錄調整至: Src/OS。選擇 ALLfiles 文件類型, 將圖中的八個文件添加進 uCOSIII_Sourc 組

最終添加完的結果如下圖所示

1638631545683

1638631556924

3. 添加頭文件路徑

1638631609805

4.修改啟動文件

1638631651581

5.修改添加 bsp.c和bsp.h,以及app.c和app.h中內容

// bsp.c
#include "includes.h"

#define  DWT_CR      *(CPU_REG32 *)0xE0001000
#define  DWT_CYCCNT  *(CPU_REG32 *)0xE0001004
#define  DEM_CR      *(CPU_REG32 *)0xE000EDFC
#define  DBGMCU_CR   *(CPU_REG32 *)0xE0042004

#define  DEM_CR_TRCENA                   (1 << 24)
#define  DWT_CR_CYCCNTENA                (1 <<  0)

CPU_INT32U  BSP_CPU_ClkFreq (void)
{
    return HAL_RCC_GetHCLKFreq();
}

void BSP_Tick_Init(void)
{
	CPU_INT32U cpu_clk_freq;
	CPU_INT32U cnts;
	cpu_clk_freq = BSP_CPU_ClkFreq();
	

​```
#if(OS_VERSION>=3000u)
	cnts = cpu_clk_freq/(CPU_INT32U)OSCfg_TickRate_Hz;
#else
	cnts = cpu_clk_freq/(CPU_INT32U)OS_TICKS_PER_SEC;
#endif
OS_CPU_SysTickInit(cnts);
​```

}



void BSP_Init(void)
{
	BSP_Tick_Init();
	MX_GPIO_Init();
}

#if (CPU_CFG_TS_TMR_EN == DEF_ENABLED)
void  CPU_TS_TmrInit (void)
{
    CPU_INT32U  cpu_clk_freq_hz;

​```
DEM_CR         |= (CPU_INT32U)DEM_CR_TRCENA;                /* Enable Cortex-M3's DWT CYCCNT reg.                   */
DWT_CYCCNT      = (CPU_INT32U)0u;
DWT_CR         |= (CPU_INT32U)DWT_CR_CYCCNTENA;

cpu_clk_freq_hz = BSP_CPU_ClkFreq();
CPU_TS_TmrFreqSet(cpu_clk_freq_hz);
​```

}
#endif

#if (CPU_CFG_TS_TMR_EN == DEF_ENABLED)
CPU_TS_TMR  CPU_TS_TmrRd (void)
{
    return ((CPU_TS_TMR)DWT_CYCCNT);
}
#endif

#if (CPU_CFG_TS_32_EN == DEF_ENABLED)
CPU_INT64U  CPU_TS32_to_uSec (CPU_TS32  ts_cnts)
{
	CPU_INT64U  ts_us;
  CPU_INT64U  fclk_freq;

  fclk_freq = BSP_CPU_ClkFreq();
  ts_us     = ts_cnts / (fclk_freq / DEF_TIME_NBR_uS_PER_SEC);

  return (ts_us);
}
#endif

#if (CPU_CFG_TS_64_EN == DEF_ENABLED)
CPU_INT64U  CPU_TS64_to_uSec (CPU_TS64  ts_cnts)
{
	CPU_INT64U  ts_us;
	CPU_INT64U  fclk_freq;

  fclk_freq = BSP_CPU_ClkFreq();
  ts_us     = ts_cnts / (fclk_freq / DEF_TIME_NBR_uS_PER_SEC);
	
  return (ts_us);
}
#endif
// bsp.h
#ifndef  __BSP_H__
#define  __BSP_H__

#include "stm32f1xx_hal.h"

void BSP_Init(void);

#endif

// app.c
#include <includes.h>

// app.h
#ifndef  __APP_H__
#define  __APP_H__

#include <includes.h>

#endif /* __APP_H__ */

6.將main.c代碼修改如下

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <includes.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
//任務控制塊
static  OS_TCB   AppTaskStartTCB;

//任務堆棧
static  CPU_STK  AppTaskStartStk[APP_TASK_START_STK_SIZE];

/* 私有函數原形 --------------------------------------------------------------*/
static  void  AppTaskCreate(void);
static  void  AppObjCreate(void);
static  void  AppTaskStart(void *p_arg);
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /**Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /**Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	OS_ERR  err;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
//  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
//  SystemClock_Config();

  /* USER CODE BEGIN SysInit */
	OSInit(&err);    
  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
//  MX_GPIO_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
                                                                                 
	/* 創建任務 */
	OSTaskCreate((OS_TCB     *)&AppTaskStartTCB,                /* Create the start task                                */
				 (CPU_CHAR   *)"App Task Start",
				 (OS_TASK_PTR ) AppTaskStart,
				 (void       *) 0,
				 (OS_PRIO     ) APP_TASK_START_PRIO,
				 (CPU_STK    *)&AppTaskStartStk[0],
				 (CPU_STK_SIZE) APP_TASK_START_STK_SIZE / 10,
				 (CPU_STK_SIZE) APP_TASK_START_STK_SIZE,
				 (OS_MSG_QTY  ) 0,
				 (OS_TICK     ) 0,
				 (void       *) 0,
				 (OS_OPT      )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),
				 (OS_ERR     *)&err);
	/* 啟動多任務系統,控制權交給uC/OS-III */
	OSStart(&err);            /* Start multitasking (i.e. give control to uC/OS-III). */
               
}


/**
  * 函數功能: 啟動任務函數體。
  * 輸入參數: p_arg 是在創建該任務時傳遞的形參
  * 返 回 值: 無
  * 說    明:無
  */
static  void  AppTaskStart (void *p_arg)
{
  OS_ERR      err;

  (void)p_arg;

  BSP_Init();                                                 /* Initialize BSP functions                             */
  CPU_Init();

  Mem_Init();                                                 /* Initialize Memory Management Module                  */

#if OS_CFG_STAT_TASK_EN > 0u
  OSStatTaskCPUUsageInit(&err);                               /* Compute CPU capacity with no task running            */
#endif

  CPU_IntDisMeasMaxCurReset();

  AppTaskCreate();                                            /* Create Application Tasks                             */

  AppObjCreate();                                             /* Create Application Objects                           */

  while (DEF_TRUE)
  {
		HAL_GPIO_TogglePin(LED0_GPIO_Port,LED0_Pin);
		HAL_GPIO_WritePin(LED1_GPIO_Port,LED1_Pin, GPIO_PIN_SET);
		OSTimeDlyHMSM(0, 0, 0, 500,
                  OS_OPT_TIME_HMSM_STRICT,
                  &err);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}


/* USER CODE BEGIN 4 */
/**
  * 函數功能: 創建應用任務
  * 輸入參數: p_arg 是在創建該任務時傳遞的形參
  * 返 回 值: 無
  * 說    明:無
  */
static  void  AppTaskCreate (void)
{
  
}


/**
  * 函數功能: uCOSIII內核對象創建
  * 輸入參數: 無
  * 返 回 值: 無
  * 說    明:無
  */
static  void  AppObjCreate (void)
{
	
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{ 
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

3.將代碼編譯燒錄觀察結果

發現板上的PC13小燈正常閃爍,串口正常輸出信息

1638632139695

二、通過RTC時鍾輸出時間日期

1.RTC簡介

  1. RTC實時時鍾特征與原理
    RTC (Real Time Clock):實時時鍾
      實時時鍾是一個獨立的定時器。RTC模塊擁有一組連續計數的計數器,在相應軟件配置下,可提供時鍾日歷的功能。修改計數器的值可以重新設置系統當前的時間和日期。
      RTC模塊和時鍾配置系統(RCC_BDCR寄存器)處於后備區域,即在系統復位或從待機模式喚醒后, RTC的設置和時間維持不變。
      系統復位后,對后備寄存器和RTC的訪問被禁止,這是為了防止對后備區域(BKP)的意外寫操作。執行以下操作將使能對后備寄存器和RTC的訪問:

設置寄存器RCC_APB1ENR的PWREN和BKPEN位,使能電源和后備接口時鍾
設置寄存器PWR_CR的DBP位,使能對后備寄存器和RTC的訪問。

  1. RTC組成
    APB1接口:用來和APB1總線相連。通過APB1接口可以訪問RTC的相關寄存器(預分頻值,計數器值,鬧鍾值)。
    RTC核心:由一組可編程計數器組成。分兩個主要模塊。
    第一個是RTC預分頻模塊,它可以編程產生最長1秒的RTC時間基TR_CLK。如果設置了秒中斷允許位,可以產生秒中斷。
    第二個是32位的可編程計數器,可被初始化為當前時間。系統時間按TR_CLK周期累加並與存儲在RTC_ALR寄存器中的可編程時間相比,當匹配時候如果設置了鬧鍾中斷允許位,可以產生鬧鍾中斷。

2.通過CUBEMX創建項目

配置RCC

1638632318845

設置RTC

1638632370691

開啟串口輸出時間

1638632383015

設置時鍾

1638632392213

在RTC界面設置時間日期

1638632437834

生成代碼

3、編寫代碼

在main函數中寫上獲取時間輸出時間,需要添加fputc函數才可以使用printf

int fputc(int c, FILE *stream)
{
	HAL_UART_Transmit(&huart1,(unsigned char *)&c,1,1000);
	return 1;
}
  while (1)
  {
 	  /* Get the RTC current Time */
	  HAL_RTC_GetTime(&hrtc, &GetTime, RTC_FORMAT_BIN);
      /* Get the RTC current Date */
  	  HAL_RTC_GetDate(&hrtc, &GetData, RTC_FORMAT_BIN);

​```
  /* Display date Format : yy/mm/dd */
  printf("%02d/%02d/%02d\r\n",2000 + GetData.Year, GetData.Month, GetData.Date);
  /* Display time Format : hh:mm:ss */
​```

  	  printf("%02d:%02d:%02d\r\n",GetTime.Hours, GetTime.Minutes, GetTime.Seconds);

  	  printf("\r\n");

  	  HAL_Delay(1000);

  }

在while函數之前需要定義RTC時間的結構體

RTC_DateTypeDef GetData;  

RTC_TimeTypeDef GetTime;

4、運行代碼觀察結果

發現正常運行,從設定的時間正常運轉輸出

三、總結

學習了解了一個可以運行在stm32上的嵌入式操作系統UCOS,學習了如何將這個源碼移植到自己的項目之上,為以后學習運用其他的嵌入式操作系統打下基礎,再學習了解了RTC時鍾的運行原理以及如何使用設置等,學會了通過CUBEMX創建項目是能RTC時鍾並了解了如何調用這個時鍾信息.


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM