在上一篇博文介紹了MySQL數據庫取得pymysql的使用,參考:https://www.cnblogs.com/minseo/p/15597428.html
本文介紹異步MySQL異步驅動aiomysql的使用
1,安裝異步模塊
如果沒有模塊則先使用pip安裝模塊
pip3 install asyncio pip3 install aiomysql
2,創建MySQL數據庫連接池
和同步方式不一樣的是使用異步不能直接創建數據庫連接conn,需要先創建一個數據庫連接池對象__pool通過這個數據庫連接池對象來創建數據庫連接
數據庫配置信息和介紹pymysql同步使用的數據庫是一樣的
import asyncio,aiomysql,time
# 數據庫配置dict
db_config = {
'host': 'localhost',
'user': 'www-data',
'password': 'www-data',
'db': 'awesome'
}
# 創建數據庫連接池協程函數
async def create_pool(**kw):
global __pool
__pool = await aiomysql.create_pool(
host=kw.get('host', 'localhost'),
port=kw.get('port', 3306),
user=kw['user'],
password=kw['password'],
db=kw['db']
)
loop=asyncio.get_event_loop()
loop.run_until_complete(create_pool(**db_config))
# 在事件循環中運行了協程函數則生成了全局變量__pool是一個連接池對象 <aiomysql.pool.Pool object at 0x00000244AD1724C8>
print(__pool)
# <aiomysql.pool.Pool object at 0x00000244AD1724C8>
3,創建執行sql語句的協程函數
因為是異步模塊,只能在事件循環中通過await關鍵字調用,使用需要創建執行sql語句的協程函數
在協程函數內使用全局上一步創建的連接池對象來創建連接conn和浮標對象cur,通過浮標對象來執行sql語句,執行方法和pymysql模塊的執行方法是一樣的
cursor.execute(sql,args) sql # 需要執行的sql語句例如'select * from table_name' args # 替換sql語句的格式化字符串,即sql語句可以使用%s代表一個字符串,然后在args中使用對應的變量或參數替換,args為一個list或元組,即是一個有序的序列需要和sql中的%s一一對應 # 例如sql='select * from table_name where id=%s' args=['12345'] # 相當於使用args中的參數替換sql中的%s # select * from table_name where id='12345'
下面分別創建兩個協程函數select execute一個用來執行搜索操作,一個用來執行insert,update,delete等修改操作
# 執行select函數
async def select(sql,args,size=None):
with await __pool as conn:
cur = await conn.cursor(aiomysql.DictCursor)
await cur.execute(sql.replace('?','?s'),args or ())
if size:
rs = await cur.fetchmany(size)
else:
rs = await cur.fetchall()
await cur.close()
return rs
# 執行insert update delete函數
async def execute(sql,args):
with await __pool as conn:
try:
cur = await conn.cursor()
await cur.execute(sql.replace('?','%s'),args)
affetced = cur.rowcount
await conn.commit()
await cur.close()
except BaseException as e:
raise
return affetced
4,實踐執行sql語句
實踐執行sql語句前我們首先在本機創建一個數據庫和對應的表用於測試
數據庫對應的主機,用戶名,密碼,庫名,表名如下
host: localhost user: www-data password: www-data db:awesome table_name: users
創建表名的sql語句如下,需要在數據庫中創建好對應的表
CREATE TABLE `users` ( `id` varchar(50) NOT NULL, `email` varchar(50) NOT NULL, `passwd` varchar(50) NOT NULL, `admin` tinyint(1) NOT NULL, `name` varchar(50) NOT NULL, `image` varchar(500) NOT NULL, `created_at` double NOT NULL, PRIMARY KEY (`id`), UNIQUE KEY `idx_email` (`email`), KEY `idx_created_at` (`created_at`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8
創建好的表對應的結構如下
mysql> desc users; +------------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +------------+--------------+------+-----+---------+-------+ | id | varchar(50) | NO | PRI | NULL | | | email | varchar(50) | NO | UNI | NULL | | | passwd | varchar(50) | NO | | NULL | | | admin | tinyint(1) | NO | | NULL | | | name | varchar(50) | NO | | NULL | | | image | varchar(500) | NO | | NULL | | | created_at | double | NO | MUL | NULL | | +------------+--------------+------+-----+---------+-------+ 7 rows in set (2.68 sec)
①執行insert操作
# insert start
import time
sql = 'insert into `users` (`email`, `passwd`, `admin`, `name`, `image`, `created_at`, `id`) values (?, ?, ?, ?, ?, ?, ?)'
args = ['test@qq.com','password',1,'test','about:blank',time.time(),'111111']
async def insert():
await execute(sql,args)
loop.run_until_complete(insert())
# insert end
執行方式和pymysql沒有區別,不同的是需要在事件循環中使用關鍵字await調用
執行完畢在MySQL中查看插入的數據
mysql> select * from users; +--------+-------------+----------+-------+------+-------------+------------------+ | id | email | passwd | admin | name | image | created_at | +--------+-------------+----------+-------+------+-------------+------------------+ | 111111 | test@qq.com | password | 1 | test | about:blank | 1637738541.48629 | +--------+-------------+----------+-------+------+-------------+------------------+ 1 row in set (0.00 sec)
②執行update操作
直接在loop事件循環中執行execute協程函數也可以
# update start import time sql = 'update `users` set `email`=?, `passwd`=?, `admin`=?, `name`=?, `image`=?, `created_at`=? where `id`=?' args = ['test2@qq.com','password',1,'test2','about:blank',time.time(),'111111'] loop.run_until_complete(execute(sql,args)) # update end
執行以后把email和name都修改了
③執行delete操作
# delete start sql = 'delete from `users` where `id`=?' args = ['111111'] loop.run_until_complete(execute(sql,args)) # delete end
同樣根據關鍵字id指定的值刪除了這條數據
④執行selete操作
在執行select操作前我們保證數據庫里面至少有一條數據
# select start sql = 'select * from users' args = [] rs = loop.run_until_complete(select(sql,args)) print(rs) # select end
這里直接執行搜索的協程函數select根據函數的定義返回的是所有結果的list,元素是查詢結果的字典
輸出為
[{'id': '111111', 'email': 'test@qq.com', 'passwd': 'password', 'admin': 1, 'name': 'test', 'image': 'about:blank', 'created_at': 1637739212.74493}]
如果結果有多個則使用list的下標取出
補充
同步模塊pymysql和異步模塊aiomysql執行速度對比
假如我們需要往數據庫插入20000條數據,我們分別使用同步模式和異步模式
首先刪除數據庫所有測試數據
delete from users;
同步的代碼
d:/learn-python3/學習腳本/pymysql/use_pymysql.py
import pymysql
db_config = {
'host': 'localhost',
'user': 'www-data',
'password': 'www-data',
'db': 'awesome'
}
# 創建連接,相當於把字典內的鍵值對傳遞
# 相當於執行pymysql.connect(host='localhost',user='www-data',password='www-data',db='awesome')
conn = pymysql.connect(**db_config)
# 創建游標
cursor = conn.cursor(pymysql.cursors.DictCursor)
sql = 'select * from users'
args = []
# 執行查詢返回結果數量
# 執行查詢
rs=cursor.execute(sql,args)
# 獲取查詢結果
# 獲取查詢的第一條結果,返回一個dict,dict元素是查詢對應的鍵值對
# 如果查詢結果有多條則執行一次,游標移動到下一條數據,在執行一次又返回一條數據
# print(cursor.fetchone())
# print(cursor.fetchone())
# print(cursor.fetchall())
# print(cursor.fetchmany())
# {'id': '111111', 'email': 'test@qq.com', 'passwd': 'password', 'admin': 1, 'name': 'test', 'image': 'about:blank', 'created_at': 1637723578.5734}
# 獲取查詢的所有結果,返回一個list,list元素是dict,dict元素是查詢對應的鍵值對
# print(cursor.fetchall())
# [{'id': '111111', 'email': 'test@qq.com', 'passwd': 'password', 'admin': 1, 'name': 'test', 'image': 'about:blank', 'created_at': 1637723578.5734}]
# 獲取查詢的前幾條結果,返回一個dict,dict元素是查詢對應的鍵值對
# print(cursor.fetchmany(1))
# [{'id': '111111', 'email': 'test@qq.com', 'passwd': 'password', 'admin': 1, 'name': 'test', 'image': 'about:blank', 'created_at': 1637723578.5734}]
# 執行修改操作
import time
# # insert start
sql = 'insert into `users` (`email`, `passwd`, `admin`, `name`, `image`, `created_at`, `id`) values (?, ?, ?, ?, ?, ?, ?)'
args = ['test1@qq.com','password',1,'test','about:blank',time.time(),'1111121']
# 使用replace 把'?'替換成'%s'
# rs = cursor.execute(sql.replace('?','%s'),args)
# print(cursor.rowcount)
# conn.commit()
# print(rs)
# insert end
# update start
# sql = 'update `users` set `email`=?, `passwd`=?, `admin`=?, `name`=?, `image`=?, `created_at`=? where `id`=?'
# args = ['test2@qq.com','password',1,'test2','about:blank',time.time(),'111111']
# print(cursor.execute(sql.replace('?','%s'),args))
# conn.commit()
# update end
# delete start
# sql = 'delete from `users` where `id`=?'
# args = ['111111']
# print(cursor.execute(sql.replace('?','%s'),args))
# conn.commit()
# delete end
# 寫成函數調用,函數內部使用了數據庫連接對象conn
# 可以先定義成全局變量global
def select(sql,args,size=None):
cursor = conn.cursor(pymysql.cursors.DictCursor)
cursor.execute(sql.replace('?','%s'),args or ())
if size:
rs = cursor.fetchmany(size)
else:
rs = cursor.fetchall()
cursor.close
# logging.info('rows returned: %s' % len(rs))
return rs
def execute(sql,args):
cursor = conn.cursor(pymysql.cursors.DictCursor)
try:
cursor.execute(sql.replace('?','%s'),args)
# rowcount方法把影響函數返回
rs = cursor.rowcount
cursor.close()
conn.commit()
except:
raise
return rs
start_time = time.time()
for n in range(20000):
sql = 'insert into `users` (`email`, `passwd`, `admin`, `name`, `image`, `created_at`, `id`) values (?, ?, ?, ?, ?, ?, ?)'
email = 'test%s@qq.com' %n
args = [email,'password',1,'test','about:blank',time.time(),n]
execute(sql,args)
end_time = time.time()
# 打印開始和結束時間的差
print(end_time - start_time)
我們使用一個循環20000次往數據庫插入數據
執行,插入數據比較多需要等待一段時間輸出
D:\learn-python3\函數式編程>C:/Python37/python.exe d:/learn-python3/學習腳本/pymysql/use_pymysql.py 77.46903562545776
可以在數據庫查詢到這20000條數據,而且這個表的字段created_at存儲了創建這條數據的時間戳,我們可以看到,id越往后的時間戳越往后,說明數據是同步按順序一一插入的
我們按照字段created_at排序查詢

下面我們刪除所有數據使用異步方式插入
異步的代碼如下
d:/learn-python3/學習腳本/aiomysql/use_aiomysql.py
import asyncio,aiomysql,time
# 數據庫配置dict
db_config = {
'host': 'localhost',
'user': 'www-data',
'password': 'www-data',
'db': 'awesome'
}
# 創建數據庫連接池協程函數
async def create_pool(**kw):
global __pool
__pool = await aiomysql.create_pool(
host=kw.get('host', 'localhost'),
port=kw.get('port', 3306),
user=kw['user'],
password=kw['password'],
db=kw['db']
)
loop=asyncio.get_event_loop()
loop.run_until_complete(create_pool(**db_config))
# 在事件循環中運行了協程函數則生成了全局變量__pool是一個連接池對象 <aiomysql.pool.Pool object at 0x00000244AD1724C8>
print(__pool)
# <aiomysql.pool.Pool object at 0x00000244AD1724C8>
# 執行select函數
async def select(sql,args,size=None):
with await __pool as conn:
cur = await conn.cursor(aiomysql.DictCursor)
await cur.execute(sql.replace('?','?s'),args or ())
if size:
rs = await cur.fetchmany(size)
else:
rs = await cur.fetchall()
await cur.close()
return rs
# 執行insert update delete函數
async def execute(sql,args):
with await __pool as conn:
try:
cur = await conn.cursor()
await cur.execute(sql.replace('?','%s'),args)
affetced = cur.rowcount
await conn.commit()
await cur.close()
except BaseException as e:
raise
return affetced
# insert start
# import time
# sql = 'insert into `users` (`email`, `passwd`, `admin`, `name`, `image`, `created_at`, `id`) values (?, ?, ?, ?, ?, ?, ?)'
# args = ['test@qq.com','password',1,'test','about:blank',time.time(),'111111']
# async def insert():
# await execute(sql,args)
# loop.run_until_complete(insert())
# insert end
# update start
# import time
# sql = 'update `users` set `email`=?, `passwd`=?, `admin`=?, `name`=?, `image`=?, `created_at`=? where `id`=?'
# args = ['test2@qq.com','password',1,'test2','about:blank',time.time(),'111111']
# loop.run_until_complete(execute(sql,args))
# update end
# delete start
# sql = 'delete from `users` where `id`=?'
# args = ['111111']
# loop.run_until_complete(execute(sql,args))
# delete end
# select start
# sql = 'select * from users'
# args = []
# rs = loop.run_until_complete(select(sql,args))
# print(rs)
# select end
async def insert1():
for n in range(10000):
sql = 'insert into `users` (`email`, `passwd`, `admin`, `name`, `image`, `created_at`, `id`) values (?, ?, ?, ?, ?, ?, ?)'
email = 'test%s@qq.com' %n
args = [email,'password',1,'test','about:blank',time.time(),n]
await execute(sql,args)
async def insert2():
for n in range(10001,20001):
sql = 'insert into `users` (`email`, `passwd`, `admin`, `name`, `image`, `created_at`, `id`) values (?, ?, ?, ?, ?, ?, ?)'
email = 'test%s@qq.com' %n
args = [email,'password',1,'test','about:blank',time.time(),n]
await execute(sql,args)
async def main():
# 需要組合成一個事件才會異步執行即在執行insert1的時候同步執行insert2
await asyncio.gather(insert1(),insert2())
start_time = time.time()
loop.run_until_complete(main())
end_time = time.time()
print(end_time - start_time)
這里我們定義了兩個協程函數,分別用來執行前10000個數據和后10000個數據的插入,在main()把這兩個協程函數組合成一個事件循環
等待一段時間后執行輸出如下,忽略這個warning,可以看到執行時間明顯比同步時間短
d:/learn-python3/學習腳本/aiomysql/use_aiomysql.py:42: DeprecationWarning: with await pool as conn deprecated, useasync with pool.acquire() as conn instead with await __pool as conn: 39.794615507125854
我們去數據庫查詢一下數據也可以看到id從0開始和id從10001開始幾乎是同時插入的

