結果截圖
數據准備
數據的爬取:https://www.cnblogs.com/qi-6666/p/15525301.html
導入庫
from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType, SymbolType from pyecharts.charts import Map import pandas as pd from pyecharts.charts import Bar from pyecharts.globals import ThemeType from pyecharts.charts import Map,Page
玫瑰圖(使用軟件:jupyter python3)
from pyecharts import options as opts import pandas as pd data_age = pd.read_excel('實時更新:新型冠狀病毒肺炎疫情地圖3.xlsx') # 年齡數據分箱 data_age['確診區間'] = pd.cut(data_age['確診數'], bins = [0,60,120,200], labels = ['60以下','60-120','120以上']) # data_age # 年齡區間數量統計 age_counts = data_age['確診區間'].value_counts() # age_counts # 數據結構重組 charts_data_age = [z for z in zip(age_counts.index,age_counts.tolist())] from pyecharts.charts import Pie from pyecharts.globals import ThemeType pie = ( Pie(init_opts=opts.InitOpts(width="600px", height="400px",theme=ThemeType.DARK)) # 設置背景的大小 .add( series_name = "確診數", # 必須項 data_pair = charts_data_age, radius=["20%", "50%"], # 設置環的大小 rosetype="radius", # 設置玫瑰圖類型 label_opts=opts.LabelOpts(formatter="{a}:{b}\n個數:{c}\n占比:{d}%"), # 設置標簽內容格式 ) .set_global_opts(title_opts=opts.TitleOpts(title="確診比例")) ) pie.render_notebook()
運行結果
(點贊關注后續更新!如遇錯誤,歡迎截圖評論,作者看到會盡力幫解決和更新內容)