各種算符之間的關系


  • 先來說下常用算符的定義.

    半正定算符: \(\lang\psi|A|\psi\rang \geq 0\)

    正定算符: \(\lang\psi|A|\psi\rang > 0\)

    厄米算符: \(A=A^\dagger\), 特征值是實數.

    幺正算符(酉算符): \(A^\dagger=A^{-1}, 即 AA^\dagger=I\)

    正規算符: \(AA^\dagger=A^\dagger A\), 充要條件是可以進行對角化及譜分解.

  • 再說說這幾個之間的關系.

    • 半正定算子一定是厄米算子. 詳細證明見我的博文 證明半正定算子一定是厄米的.

    • 厄米算子一定是正規算子.

      \(厄米算子 \Longleftrightarrow A=A^\dagger \Longrightarrow AA^\dagger=A^\dagger A \Longleftrightarrow 正規算子\)

    • 酉算子一定是正規算子.

      \(酉算子 \Longleftrightarrow AA^\dagger=A^\dagger A=I \Longrightarrow AA^\dagger=A^\dagger A \Longleftrightarrow 正規算子\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM