強化學習相關資料(書籍,課程,網址,筆記等)


強化學習相關資料(書籍,課程,網址,筆記等)

作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/

更多請看:Reinforcement Learning - 隨筆分類 - 凱魯嘎吉 - 博客園 https://www.cnblogs.com/kailugaji/category/2038931.html

  1. Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018. http://incompleteideas.net/book/the-book.html (經典必讀,最全面),中文翻譯:https://rl.qiwihui.com/zh_CN/latest/

  2. Hao Dong, Zihan Ding, Shanghang Zhang, et al., Deep Reinforcement Learning: Fundamentals, Research, and Applications, Springer Nature, http://www.deepreinforcementlearningbook.org, 2021. https://link.springer.com/content/pdf/10.1007%2F978-981-15-4095-0.pdf (匯總性強,但圖少,更像是期末總結小筆記),中文版:深度強化學習:基礎、研究與應用 (博文視點出品) https://deepreinforcementlearningbook.org/assets/pdfs/%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0(%E4%B8%AD%E6%96%87%E7%89%88-%E5%BD%A9%E8%89%B2%E5%8E%8B%E7%BC%A9).pdf

  3. MYKEL J. KOCHENDERFER, TIM A. WHEELER, AND KYLE H. WRAY, Algorithms for Decision Making, MIT PRESS, 2022. https://algorithmsbook.com/ or https://mykel.kochenderfer.com/textbooks/

  4. Qi Wang, Yiyuan Yang, Ji Jiang, Easy RL 強化學習中文教程, 2021. https://github.com/datawhalechina/easy-rl/releases (相當於李宏毅課程《強化學習》筆記,大白話,通俗易懂,部分內容有待商榷與完善)

  5. 王樹森, 黎彧君, 張志華, 深度強化學習,https://github.com/wangshusen/DRL/blob/master/Notes_CN/DRL.pdf, 2021. (深度強化學習打基礎必看,深入淺出,推薦閱讀)

  6. 邱錫鵬,神經網絡與深度學習,機械工業出版社,https://nndl.github.io/, 2020. (強化學習打基礎必看,深度的涉及的少,推薦閱讀)

  7. 王東,機器學習導論,清華大學出版社,http://166.111.134.19:7777/mlbook/release/21-01-02/book.pdf, 2021.

  8. Alekh Agarwal, Nan Jiang, Sham M. Kakade, Wen Sun. Reinforcement Learning: Theory and Algorithms, https://rltheorybook.github.io/rltheorybook_AJKS.pdf, 2021. (含offline RL)
  9. Aske Plaat, Deep Reinforcement Learning, a textbook, https://arxiv.org/abs/2201.02135, 2022. (2022新出的關於深度強化學習的書,含meta learning)
  10. CS 885 Fall 2021 - Reinforcement Learning https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-fall21/schedule.html

  11. CS330 Fall 2021 Deep Multi-Task and Meta Learning https://cs330.stanford.edu/
  12. CS 234: Reinforcement Learning Winter 2021 https://web.stanford.edu/class/cs234/index.html

  13. CS 285 Deep Reinforcement Learning https://rail.eecs.berkeley.edu/deeprlcourse/

  14. UCL Course on RL 2015 Teaching - David Silver https://www.davidsilver.uk/teaching/

  15. 10703 (Spring 2018): Deep RL and Control http://www.cs.cmu.edu/~rsalakhu/10703/lectures.html

  16. Nan Jiang, CS 498 Reinforcement Learning (S21), CS 542 Statistical Reinforcement Learning (F21), https://nanjiang.cs.illinois.edu/
  17. 李宏毅, 強化學習課程, https://www.bilibili.com/video/BV1UE411G78S?spm_id_from=333.999.0.0, 2020.

  18. 騰訊周沫凡(莫煩Python)強化學習、教程、代碼 https://mofanpy.com/tutorials/machine-learning/reinforcement-learning/

  19. Notes on Reinforcement Learning http://paulorauber.com/notes/reinforcement_learning.pdf (強化學習打基礎看)

  20. OpenAI Spinning Up在線學習平台,包括原理、算法、論文、代碼, 英文版https://spinningup.openai.com/en/latest/中文版https://spinningup.readthedocs.io/zh_CN/latest/index.htmlTable of environments · openai/gym Wiki · GitHub https://github.com/openai/gym/wiki/Table-of-environments

  21. 強化學習路線圖 - 深度強化學習實驗室 http://deeprl.neurondance.com/d/107 or https://github.com/NeuronDance/DeepRL/tree/master/A-Guide-Resource-For-DeepRL

  22. 深度強化學習實驗室 - 一個開源開放、共享共進的強化學習學術組織、線上創新實驗室http://deeprl.neurondance.com/

  23. RLChina 強化學習社區:http://rlchina.org/
  24. 深度強化學習 - 極術社區  https://aijishu.com/blog/deeprl
  25. 智源社區:https://hub.baai.ac.cn/
  26. 伯克利人工智能研究 (BAIR) 實驗室:https://bair.berkeley.edu/blog/
  27. CampusAI https://campusai.github.io/theory/

  28. 強化學習論文:https://github.com/hanjuku-kaso/awesome-offline-rl
  29. 強化學習前沿 - 知乎專欄:https://www.zhihu.com/column/reinforcementlearning
  30. TorchRL:PyTorch強化學習庫 https://github.com/facebookresearch/rl
  31. 動手強化學習:https://hrl.boyuai.com/


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM