實驗6:開源控制器實踐——RYU


SDN實驗6:開源控制器實踐RYU

實驗目的

  • 能夠獨立部署RYU控制器
  • 能夠理解RYU控制器實現軟件定義的集線器原理
  • 能夠理解RYU控制器實現軟件定義的交換機原理

基本要求

  • 完成Ryu控制器的安裝

在Ryu安裝目錄下執行ryu --version查看版本

建立拓撲:

sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

連接ryu控制器:

ryu-manager ryu/ryu/app/gui_topology/gui_topology.py --observe-links
  • 通過Ryu的圖形界面查看網絡拓撲(直接訪問http://127.0.0.1:8080即可)

  • 閱讀Ryu文檔的The First Application一節,運行並使用 tcpdump 驗證L2Switch,分析和POX的Hub模塊有何不同

L2Switch.py文件:

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]

        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data

        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions, data = data)
        dp.send_msg(out)

使用ryu-manager L2Switch.py運行

h1 ping h2:

h1 ping h3:

可以看到均為洪泛轉發ICMP報文

不同之處在於L2Switch下發的流表無法查看,而Hub可以查看

進階要求

  • simple_switch_13.py注釋
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# 引入包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
    # 定義openflow版本
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        # 定義保存mac地址到端口的一個映射
        self.mac_to_port = {}

    # 處理EventOFPSwitchFeatures事件
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()#match:流表項匹配,OFPMatch():不匹配任何信息
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)#添加流表項

    # 添加流表函數
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        # 獲取交換機信息
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # 對action進行包裝
        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        # 判斷是否有buffer_id,生成mod對象
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)
        # 發送mod
        datapath.send_msg(mod)

    # 觸發packet in事件時,調用_packet_in_handler函數
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        # 獲取包信息,交換機信息,協議等等
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        # 忽略LLDP類型
        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return

        # 獲取源端口,目的端口
        dst = eth.dst
        src = eth.src

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # 學習包的源地址,和交換機上的入端口綁定
        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port

        # 查看是否已經學習過該目的mac地址
        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        # 否則進行洪泛
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]

        # 下發流表處理后續包,不再觸發 packet in 事件
        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
		# 發送Packet_out數據包
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        # 發送流表
        datapath.send_msg(out)
  • 代碼當中的mac_to_port的作用是什么

保存mac地址到交換機端口的映射,為交換機自學習功能提供數據結構進行mac端口的存儲

  • simple_switch和simple_switch_13在dpid的輸出上有何不同?
dpid = datapath.id      # simple_switch的dpid賦值
dpid = format(datapath.id, "d").zfill(16)   # simple_switch_13的dpid賦值

可見在simple_switch_13中,會在前端加上0以填充至16位,simple_switch直接輸出dpid

  • 相比simple_switch,simple_switch_13增加的switch_feature_handler實現了什么功能?

實現了交換機以特性應答消息響應特性請求

  • simple_switch_13是如何實現流規則下發的?

在接收到packetin事件后,首先獲取包學習,交換機信息,以太網信息,協議信息等。如果以太網類型是LLDP類型,則不予處理。如果不是,則獲取源端口目的端口,以及交換機id,先學習源地址對應的交換機的入端口,再查看是否已經學習目的mac地址,如果沒有則進行洪泛轉發。如果學習過該mac地址,則查看是否有buffer_id,如果有的話,則在添加流動作時加上buffer_id,向交換機發送流表

  • switch_features_handler和_packet_in_handler兩個事件在發送流規則的優先級上有何不同

switch_features_handler下發流表的優先級更高

個人總結

本次實驗的基礎要求和實驗五比較相似,雖然遇到了一些無法ping通的小bug,但重新嘗試之后就消失了(所以沒有搞清楚為什么會ping不通)進階要求當中,閱讀源碼的部分應該是比較復雜的,需要對RYU的原理有更深入的了解,對源碼分析和對openflow協議的理解也有一定的要求


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM