實驗6:開源控制器實踐——RYU
安裝截圖
拓撲可視化
tcpdump查看
h1 ping h2
h1 ping h3
可以看到均為洪泛轉發
查看控制器流表,如下圖:
看到沒有流表,而使用pox的hub模塊則會看到流表,如下圖:
所以可以看到二者都是洪泛轉發,但是不同之處在於POX是直接向交換機下發流表,而Ryu是在每個 Packet In 事件之后,向交換機下發動作。
進階要求
simple_switch_13.py
代碼注釋
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# 引入包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types
class SimpleSwitch13(app_manager.RyuApp):
# 定義openflow版本
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
def __init__(self, *args, **kwargs):
super(SimpleSwitch13, self).__init__(*args, **kwargs)
# 定義保存mac地址到端口的一個映射
self.mac_to_port = {}
# 處理EventOFPSwitchFeatures事件
@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):
datapath = ev.msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
# install table-miss flow entry
#
# We specify NO BUFFER to max_len of the output action due to
# OVS bug. At this moment, if we specify a lesser number, e.g.,
# 128, OVS will send Packet-In with invalid buffer_id and
# truncated packet data. In that case, we cannot output packets
# correctly. The bug has been fixed in OVS v2.1.0.
match = parser.OFPMatch()
actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
ofproto.OFPCML_NO_BUFFER)]
self.add_flow(datapath, 0, match, actions)
# 添加流表函數
def add_flow(self, datapath, priority, match, actions, buffer_id=None):
# 獲取交換機信息
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
# 對action進行包裝
inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
actions)]
# 判斷是否有buffer_id,生成mod對象
if buffer_id:
mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
priority=priority, match=match,
instructions=inst)
else:
mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
match=match, instructions=inst)
# 發送mod
datapath.send_msg(mod)
# 處理 packet in 事件
@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):
# If you hit this you might want to increase
# the "miss_send_length" of your switch
if ev.msg.msg_len < ev.msg.total_len:
self.logger.debug("packet truncated: only %s of %s bytes",
ev.msg.msg_len, ev.msg.total_len)
# 獲取包信息,交換機信息,協議等等
msg = ev.msg
datapath = msg.datapath
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
in_port = msg.match['in_port']
pkt = packet.Packet(msg.data)
eth = pkt.get_protocols(ethernet.ethernet)[0]
# 忽略LLDP類型
if eth.ethertype == ether_types.ETH_TYPE_LLDP:
# ignore lldp packet
return
# 獲取源端口,目的端口
dst = eth.dst
src = eth.src
dpid = format(datapath.id, "d").zfill(16)
self.mac_to_port.setdefault(dpid, {})
self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
# 學習包的源地址,和交換機上的入端口綁定
# learn a mac address to avoid FLOOD next time.
self.mac_to_port[dpid][src] = in_port
# 查看是否已經學習過該目的mac地址
if dst in self.mac_to_port[dpid]:
out_port = self.mac_to_port[dpid][dst]
# 否則進行洪泛
else:
out_port = ofproto.OFPP_FLOOD
actions = [parser.OFPActionOutput(out_port)]
# 下發流表處理后續包,不再觸發 packet in 事件
# install a flow to avoid packet_in next time
if out_port != ofproto.OFPP_FLOOD:
match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
# verify if we have a valid buffer_id, if yes avoid to send both
# flow_mod & packet_out
if msg.buffer_id != ofproto.OFP_NO_BUFFER:
self.add_flow(datapath, 1, match, actions, msg.buffer_id)
return
else:
self.add_flow(datapath, 1, match, actions)
data = None
if msg.buffer_id == ofproto.OFP_NO_BUFFER:
data = msg.data
out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
in_port=in_port, actions=actions, data=data)
# 發送流表
datapath.send_msg(out)
代碼當中的mac_to_port的作用是什么?
保存mac地址到交換機端口的映射,為交換機自學習功能提供數據結構進行 mac-端口 的存儲
simple_switch和simple_switch_13在dpid的輸出上有何不同?
simple_switch的dpid賦值:dpid = datapath.id
simple_switch_13的dpid賦值:dpid = format(datapath.id, "d").zfill(16)
在python console進行測試,可以看到在simple_switch直接獲取的id,在simple_switch_13中,會在前端加上0將其填充至16位
相比simple_switch,simple_switch_13增加的switch_feature_handler實現了什么功能?
實現交換機以特性應答消息響應特性請求,可查看文檔
simple_switch_13是如何實現流規則下發的?
在接收到packetin事件后,首先獲取包學習,交換機信息,以太網信息,協議信息等。如果以太網類型是LLDP類型,則不予處理。如果不是,則獲取源端口目的端口,以及交換機id,先學習源地址對應的交換機的入端口,再查看是否已經學習目的mac地址,如果沒有則進行洪泛轉發。如果學習過該mac地址,則查看是否有buffer_id,如果有的話,則在添加流動作時加上buffer_id,向交換機發送流表。
總結
本次實驗難度較難,主要在於對openflow協議的理解,以及對Ryu源碼的熟悉程度。在實驗過程中,遇到如下問題:
- 在用Ryu的L2Switch模塊下發流表時,看到洪泛現像,但是在交換機上沒有看到流表,在請教老師之后才知道,這才是Ryu與POX之間的差別
- 在分析simple_switch.py和simple_switch_13.py源碼時,遇到困難,不理解函數的作用,在查看官方文檔,以及搜索相關資料之后,對源碼的理解相對透徹了些
這次實驗相比上次難度更大,對源碼分析和對openflow協議的理解有一定的要求,但是做完實驗后感受到收獲頗多,學習到了更多的知識。