前言:
勢流理論復習筆記,沒想到自己又重新學了一遍勢流理論。。。
所以記個筆記
筆記內容基本摘抄自朱仁傳老師的《船舶在波浪上的運動理論》,寫得好哇!!!
基礎理論
均勻、不可壓縮理想流體的流場中,連續性方程與歐拉方程可以描述為:
\[\begin{align} \begin{cases} \nabla \boldsymbol v=0 \\ \left( \frac{\partial}{\partial t}+\boldsymbol v\cdot \nabla \right)\boldsymbol v=-\nabla\left(\frac{p}{\rho}+gz \right) \end{cases} \end{align} \]
\({\boldsymbol v} (x,y,z)\text與 p(x,y,z)\)分別為速度矢量與壓力場,存在向量關系
\[\begin{align} \nabla\left ( \frac{\boldsymbol v^2}{2}\right)=\nabla\left ( \frac{\boldsymbol v\cdot \boldsymbol v}{2}\right)=(\boldsymbol v\cdot \nabla)\boldsymbol v+\boldsymbol v\times(\nabla \times \boldsymbol v) \end{align} \]
歐拉方程可以改寫為以下形式,稱為蘭姆方程\((Lamb's Equation)\)
\[\begin{align} \frac{\partial \boldsymbol v}{\partial t}+\nabla\left ( \frac{\boldsymbol v^2}{2}\right)-\boldsymbol v\times(\nabla \times \boldsymbol v)=-\nabla\left(\frac{p}{\rho}+gz \right) \end{align} \]
以上共四個方程,四個未知數,方程封閉。如果流體流動無旋有勢,方程可以進一步簡化
\[\begin{align} \boldsymbol v=\nabla \phi(x,y,z,t) \end{align} \]
\[\begin{equation} \begin{aligned} \nabla^2 \phi(x,y,z,t)=\frac{\partial^2 \phi}{\partial x^2}+\frac{\partial^2 \phi}{\partial y^2}+\frac{\partial^2 \phi}{\partial z^2}=0\\ \frac{\boldsymbol p}{\rho}+gz+\frac{\boldsymbol v^2}{2}+\frac{\partial \phi}{\partial t}=C(t) \end{aligned} \end{equation} \]
格林函數法
船舶在波浪中的運動問題關鍵在於求解流暢中的速度勢,即求在確定邊界條件下的拉普拉斯方程。格林函數法\((Green's \ \ function\ \ method)\)是一類成熟常用的求解方法。格林函數法的基礎勢格林公式(散度定理)推導得到,對三維空間中有界區域\(\tau\),有以下關系式
\[\begin{align} \iiint _\tau \nabla\cdot \boldsymbol A \text d \tau=\iint_S \boldsymbol n\cdot \boldsymbol A \text d S \end{align} \]
其中,\(S\)為空間域\(\tau\)充分光滑的邊界面;\(\boldsymbol n\)為曲面\(S\)的單位外法向矢量(從流體域內指向外部),矢量\(\boldsymbol A\)在封閉區域\(\tau + S\)上連續。
現令\(\boldsymbol A=\phi \nabla \psi\),於是有
\[\begin{align} \nabla \boldsymbol A=\nabla(\phi\nabla\psi)=\nabla\phi \cdot \nabla\psi+\phi\nabla^2\psi \end{align} \]
\[\begin{align} \boldsymbol n\cdot \boldsymbol A=\boldsymbol n\cdot (\phi\nabla \psi)=\phi\frac{\partial \psi}{\partial n} \end{align} \]
將\(\boldsymbol A=\phi \nabla \psi\)代入格林公式得到
\[\begin{align} \iint _S \phi \frac{\partial \psi}{\partial n}\text d S= \iiint_\tau \nabla\phi\cdot \nabla \psi\text d \tau+ \iiint_\tau \phi\cdot \nabla^2 \psi\text d \tau \end{align} \]
將\(\boldsymbol A=\psi \nabla \phi\)代入格林公式得到
\[\begin{align} \iint _S \psi \frac{\partial \phi}{\partial n}\text d S= \iiint_\tau \nabla\phi\cdot \nabla \psi\text d \tau+ \iiint_\tau \psi\cdot \nabla^2 \phi\text d \tau \end{align} \]
兩式作差得到
\[\begin{align} \iint _S \left ( \psi \frac{\partial \phi}{\partial n}- \phi \frac{\partial \psi}{\partial n}\right )\text d S= \iiint_\tau \left ( \phi\cdot \nabla^2 \psi-\psi\cdot \nabla^2 \phi\right ) \text d \tau \end{align} \]
若\(\phi,\psi\)在\(\tau\)內處處調和,即: \(\nabla^2 \phi=0,\nabla^2\psi=0\),則有
\[\begin{equation} \begin{aligned} \iint _S \left ( \psi \frac{\partial \phi}{\partial n}- \phi \frac{\partial \psi}{\partial n}\right )\text d S=0\\ \iint _S \psi \frac{\partial \phi}{\partial n}\text d S = \iint _S \phi \frac{\partial \psi}{\partial n}\text d S \end{aligned} \end{equation} \]
稱作格林第二公式。
引入
現在設\(\phi(x,y,z)\)作為待求速度勢,為調和函數;如果能恰當選取調和函數\(\psi\),使得公式11右邊端變為
\[\begin{align} \iiint_\tau \phi(Q)\cdot \nabla^2 \psi(P,Q) \text d \tau=\phi(P) \end{align} \]
\(P(x,y,z)\)為流場內任意一點,\(Q(x,y,z)\)為流場內變點,那么勢函數\(\phi\)在域內任意一點的值可以有邊界上的函數值與法向導數值確定。
滿足這種性質的\(\psi\)函數必然滿足,\(\delta\)為狄拉克雷函數
\[\begin{align} \nabla^2{\psi(P,Q)}=\delta(P-Q) \end{align} \]
對於三維問題,該方程的一個特解是
\[\begin{align} {\psi(P,Q)}=-\frac{1}{4\pi r(P,Q)} \end{align} \]
式中,\(r(P,Q)\)為P與Q點之間的距離,\(r=\sqrt{(x-\xi)^2+(y-\eta)^2+(z-\zeta)^2}\),\(\psi(P,Q)\)除了在\(P=Q\)點除外,處處滿足\(\nabla^2 \psi =0\).
流域內部問題
場點\(P(x,y,z)\)在封閉區域\(\tau+S\)內,由於存在奇異性,圍繞場點作一半徑為\(r_\varepsilon\)的小球,小球表面積為\(S_\varepsilon\),於是在\(S+S_\varepsilon\)所圍成的區域內,\(\psi\)函數處處調和。
由格林第二公式得到:
\[\begin{align} \iint _{S+S_\varepsilon} \psi \frac{\partial \phi}{\partial n}\text d S = \iint _{S+S_\varepsilon} \phi \frac{\partial \psi}{\partial n}\text d S \end{align} \]
在\(S_{\varepsilon}\)上,\(\frac{\partial \psi}{\partial n}=-\frac{1}{4\pi}\frac{\partial}{\partial r}(\frac{1}{r})_{r=r_\varepsilon}=-\frac{1}{4\pi}\frac{1}{r_\varepsilon^2}\)利用中值定理,得到
\[\begin{align} \lim\limits_{r_\varepsilon \to 0}\iint _{S_\varepsilon} \phi \frac{\partial \psi}{\partial n}\text d S= \lim\limits_{r_\varepsilon \to 0}\left [\phi\cdot \left( - \frac{1}{4\pi r_\varepsilon^2} \right)\cdot 4\pi r_\varepsilon^2\right] =-\phi(x,y,z) \end{align} \]
\[\begin{align} \lim\limits_{r_\varepsilon \to 0}\iint _{S_\varepsilon} \psi \frac{\partial \phi}{\partial n}\text d S= \lim\limits_{r_\varepsilon \to 0}\left [\frac{\partial \phi}{\partial n}\cdot \left( - \frac{1}{4\pi r_\varepsilon} \right)\cdot 4\pi r_\varepsilon^2\right] =0 \end{align} \]
格林第二公式可以化簡為
\[\begin{equation} \begin{aligned} \iint _{S} \psi \frac{\partial \phi}{\partial n}\text d S+ \iint _{S_\varepsilon} \psi \frac{\partial \phi}{\partial n}\text d S= \iint _{S} \phi \frac{\partial \psi}{\partial n}\text d S \iint _{S_\varepsilon} \phi \frac{\partial \psi}{\partial n}\text d S\\ \iint _{S} \psi \frac{\partial \phi}{\partial n}\text d S+ (0)= (-\phi)+ \iint _{S_\varepsilon} \phi \frac{\partial \psi}{\partial n}\text d S \\ \phi(x,y,z)=-\frac{1}{4\pi} \iint _{S}\left[\phi\frac{\partial}{\partial n}\left(\frac{1}{r}\right)-\frac{1}{r}\frac{\partial \phi}{\partial n} \right] \text d S \end{aligned} \end{equation} \]
對於場點落在流場邊界,作一半球
\[\phi(x,y,z)=-\frac{1}{2\pi} \iint _{S}\left[\phi\frac{\partial}{\partial n}\left(\frac{1}{r}\right)-\frac{1}{r}\frac{\partial \phi}{\partial n} \right]\text d S \]
對於場點落在流場外部,
\[0=\iint _{S}\left[\phi\frac{\partial}{\partial n}\left(\frac{1}{r}\right)-\frac{1}{r}\frac{\partial \phi}{\partial n} \right] \text d S \]
歸納起來
\[\begin{align} \iint _{S}\left[\phi\frac{\partial}{\partial n}\left(\frac{1}{r}\right)-\frac{1}{r}\frac{\partial \phi}{\partial n} \right]\text d S= \begin{cases} -4\pi \phi(x,y,z),&P \in \tau \\ -2\pi \phi(x,y,z),&P \in S \\ \qquad0,&P\notin \tau+S \end{cases} \end{align} \]
流域外部問題
如果研究的是封閉曲面\(S\)以外區域的流場,則認為流域的邊界面可以認為是\(S+S_\infin\),\(S_\infin\)為外部假想球面,半徑\(R\rightarrow\infin\),在\(S_\infin\)上有:
\[\begin{equation} \begin{aligned} \iint _{S_\infin}\left[\phi\frac{\partial}{\partial n}\left(\frac{1}{r}\right)-\frac{1}{r}\frac{\partial \phi}{\partial n} \right]\text d S=& -\iint _{S_\infin}\left[\phi\frac{1}{r^2}-\frac{1}{r}\frac{\partial \phi}{\partial r} \right]\text d S\\ =&-\iint _{S_\infin}\left[\phi\frac{1}{R^2}-\frac{1}{R}\frac{\partial \phi}{\partial r} \right]\text d S\\ \end{aligned} \end{equation} \]
當半徑\(R\rightarrow\infin\)時,\(\phi\)滿足
- \(\phi \rightarrow O\left(\frac{1}{R^{\alpha}}\right),\alpha >0\)
- \(\frac{\partial \phi}{\partial r} \rightarrow O\left(\frac{1}{R}\right)\)
\[\begin{align} \lim \limits_{R \rightarrow \infin}\iint _{S_\infin}\left[\phi\frac{1}{R^2}-\frac{1}{R}\frac{\partial \phi}{\partial r} \right]\text d S=0 \end{align} \]
此時的法向與之前一節定義的相反,由流場內指向流場外部。
格林函數的選取
對於之前提及的\(\psi=-\frac{1}{4\pi r(P,Q)}\)只是泊松方程的一個特解,但是\(\psi\)的形式並不唯一,如果存在域\(\tau\)內處處調和的函數\(G^*(P,Q)\),則
\[\begin{align} \psi(P,Q)=-\frac{1}{4\pi}\left [ \frac{1}{r(P,Q)}+G^*(P,Q)\right]=-\frac{1}{4\pi}G(P,Q) \end{align} \]
因此,格林第三公式可以寫作:
\[\begin{align} \iint _{S}\left[\phi\frac{\partial G}{\partial n}-G\frac{\partial \phi}{\partial n} \right]\text d S= \begin{cases} -4\pi \phi(x,y,z),&P \in \tau \\ -2\pi \phi(x,y,z),&P \in S \\ \qquad0,&P\notin \tau+S \end{cases} \end{align} \]
式中,\(P,Q\)為\(S\)邊界上的點。若在\(S\)上給定\(\frac{\partial \phi (Q)}{\partial n}\)