函數
1.函數的表示方法:解析式法、列表法、圖像法、語言徐書法;
2.函數的特性:有界性、單調性、奇偶性、周期性、連續性、凹凸性、復合函數、反函數、分段函數;
3.多項式函數:常函數、一次函數、二次函數、3次函數...
4.基本初等函數;
5.常用函數:實函數、雙曲函數、隱函數、多元函數
基本初等函數
冪函數:指數為常數的函數;xn
指數函數:指數為x,a>0且a≠1;ax
對數函數:y=logax;(a>0且a≠1,x>0);y=lnx;y=lgx;#a為底數; 與ax為反函數;
三角函數:正弦sinα=y/r;余弦cosα=x/r;正切tanα=y/x;余切cotα=x/y;正割secα=r/x;余割cscα=r/y;
反三角函數:三角函數的反函數是個多值函數;為限制反三角函數為單值函數,定義域&值域取相應范圍;
反正弦arcsinα ,定義域[-1,1],值域[-π/2,π/2]
反余弦arccosa,定義域[-1,1],值域[-0,π]
反正切arctanα,定義域R,值域(-π/2,π/2)
反余切arccotα,定義域R,值域[(0,π)
常數函數:y=C(C為常數)
-------------------------------------------------
原函數、反函數、
倒數、導數(斜率k);
--------------------------------------------------
函數:單調性、奇偶性、周期性;