1. OpenCV簡介

OpenCV是一個基於BSD許可(開源)發行的跨平台計算機視覺和機器學習軟件庫,可以運行在Linux、Windows、Android和Mac OS操作系統上(未來期待在Harmony OS上運行).
它輕量級而且高效——由一系列 C 函數和少量 C++ 類構成,同時提供了Python、Ruby、MATLAB等語言的接口,實現了圖像處理和計算機視覺方面的很多通用算法。
2. Opencv模塊
模塊 |
功能 |
Core |
核心模塊,包含最基礎的操作 |
Imgproc |
圖像處理模塊 |
Objdectect |
目標檢測模塊 |
Feature2D |
2D特征檢測模塊 |
Video |
視頻處理模塊 |
HighGUI |
高層圖像用戶界面 |
Calib3d |
3D重建模塊 |
ML |
機器學習模塊 |
FLANN |
最近鄰搜索模塊 |
Stitching |
圖像拼接模塊 |
Photo |
計算圖像學 |
Superres |
超分辨率模塊 |
GPU |
GPU並行加速模塊 |
3. OpenCV總覽

OpenCV框架中的每一個模塊都包含大量的計算機視覺方法,每一個模塊都能獨當一面,功能強大。
本篇文章將介紹OpenCV庫中最重要的模塊:Imgproc(圖像處理模塊)。

圖像處理模塊包括:圖像的讀取、顯示、保存;幾何運算;灰度變換;幾何變換;平滑、銳化;數學形態學;閾值分割;邊緣檢測;色彩空間;形狀繪制等。
函數 |
功能 |
cv2.imread( ) |
圖像讀取 |
cv2.imshow( ) |
圖像顯示 |
cv2.imwrite( ) |
圖像保存 |
"""圖像讀取、顯示、保存"""
img = cv2.imread('shiyuan.png')
cv2.imwrite('shi.png',img)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

函數 |
功能 |
img1+img2 |
圖像加法 |
cv2.addWeight( ) |
圖像融合 |
"""幾何運算"""
img1 = cv2.imread('shiyuan.png')
img2 = cv2.imread('lizi.png')
img3 = cv2.resize(img1,(300,300))+cv2.resize(img2,(300,300))
img4 = cv2.addWeighted(cv2.resize(img1,(300,300)),0.3,cv2.resize(img2,(300,300)),0.7,20)
cv2.imshow('img3',img3)
cv2.imshow('img4',img4)
cv2.waitKey(0)
cv2.destroyAllWindows()


"""灰度變換"""
import cv2
import copy
img = cv2.imread('bai.png',1)
img1 = cv2.imread('bai.png',0)
img = cv2.resize(img,(400,300))
img1 = cv2.resize(img,(400,300))
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#伽馬變換
gamma = copy.deepcopy(gray)
rows = img.shape[0]
cols = img.shape[1]
for i in range(rows):
for j in range(cols):
gamma[i][j]=3*pow(gamma[i][j],0.8)
cv2.imshow('img',img)
cv2.imshow('gray',img1)
cv2.imshow('gamma',gamma)
cv2.waitKey(0)
cv2.destroyAllWindows()
"""灰度變換"""
import cv2
import copy
import math
img = cv2.imread('bai.png',1)
img1 = cv2.imread('bai.png',0)
img = cv2.resize(img,(400,300))
img1 = cv2.resize(img,(400,300))
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#對數變換
logc = copy.deepcopy(gray)
rows=img.shape[0]
cols=img.shape[1]
for i in range(rows):
for j in range(cols):
logc[i][j] = 3 * math.log(1 + logc[i][j])
cv2.imshow('img',img)
cv2.imshow('gray',img1)
cv2.imshow('logc',logc)
cv2.waitKey(0)
cv2.destroyAllWindows()

"""灰度變換"""
import cv2
import copy
import math
img = cv2.imread('bai.png',1)
img1 = cv2.imread('bai.png',0)
img = cv2.resize(img,(400,300))
img1 = cv2.resize(img,(400,300))
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 反色變換
cover=copy.deepcopy(gray)
rows=img.shape[0]
cols=img.shape[1]
for i in range(rows):
for j in range(cols):
cover[i][j]=255-cover[i][j]
#通過窗口展示圖片 第一個參數為窗口名 第二個為讀取的圖片變量
cv2.imshow('img',img)
cv2.imshow('gray',img1)
cv2.imshow('cover',cover)
cv2.waitKey(0)
cv2.destroyAllWindows()

#直方圖規定化
import cv2
import numpy as np
import matplotlib.pyplot as plt
img0=cv2.imread('hua.png')#讀取原圖片
scr=cv2.imread('tu.png')#讀取目標圖片
#把兩張圖片轉成真正的灰度圖片,因為自己只會做灰度圖片的規定化
img0=cv2.cvtColor(img0,cv2.COLOR_BGR2GRAY)
img=img0.copy()#用於之后做對比圖
scr=cv2.cvtColor(scr,cv2.COLOR_BGR2GRAY)
mHist1=[]
mNum1=[]
inhist1=[]
mHist2=[]
mNum2=[]
inhist2=[]
#對原圖像進行均衡化
for i in range(256):
mHist1.append(0)
row,col=img.shape#獲取原圖像像素點的寬度和高度
for i in range(row):
for j in range(col):
mHist1[img[i,j]]= mHist1[img[i,j]]+1#統計灰度值的個數
mNum1.append(mHist1[0]/img.size)
for i in range(0,255):
mNum1.append(mNum1[i]+mHist1[i+1]/img.size)
for i in range(256):
inhist1.append(round(255*mNum1[i]))
#對目標圖像進行均衡化
for i in range(256):
mHist2.append(0)
rows,cols=scr.shape#獲取目標圖像像素點的寬度和高度
for i in range(rows):
for j in range(cols):
mHist2[scr[i,j]]= mHist2[scr[i,j]]+1#統計灰度值的個數
mNum2.append(mHist2[0]/scr.size)
for i in range(0,255):
mNum2.append(mNum2[i]+mHist2[i+1]/scr.size)
for i in range(256):
inhist2.append(round(255*mNum2[i]))

函數 |
功能 |
cv2.resize( ) |
圖像縮放 |
cv2.warpAffine( ) |
圖像平移 |
cv2.getRotationMatrix2D( ) cv2.warpAffine( ) |
圖像旋轉 |
cv2.getAffineTransform( ) cv2.warpAffine( ) |
仿射變換 |
cv2.getPerspectiveTransform( ) cv2.warpPerspective( ) |
透射變換 |
cv2.pyrUp( ) |
高斯金字塔上采樣 |
cv2.pyrDown( ) |
高斯金字塔下采樣 |
img-cv2.pyrUp(cv2.pyrDown(img)) |
拉普拉斯金字塔 |
"""幾何變換"""
img = cv2.imread('shiyuan.png')
img1 = cv2.resize(img,(300,300))
M = np.float32([[1,0,30],[0,1,60]])
img2 = cv2.warpAffine(img1,M,(300,300))
img2 = cv2.putText(img2,'panning',(20,30),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2)
M = cv2.getRotationMatrix2D(((300-1)/2.0,(300-1)/2.0),45,1)
img3 = cv2.warpAffine(img1,M,(300,300))
img3 = cv2.putText(img3,'rotation',(20,30),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2)
matr1 = np.float32([[50,50],[200,50],[50,200]])
matr2 = np.float32([[10,100],[200,50],[100,250]])
M = cv2.getAffineTransform(matr1,matr2)
img4 = cv2.warpAffine(img1,M,(300,300))
img4 = cv2.putText(img4,'affine',(20,30),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2)
matr1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
matr2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv2.getPerspectiveTransform(matr1,matr2)
img5 = cv2.warpPerspective(img1,M,(300,300))
img5 = cv2.putText(img5,'perspective',(20,30),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.imshow('img4',img4)
cv2.imshow('img5',img5)
cv2.waitKey(0)
cv2.destroyAllWindows()




"""圖像金字塔"""
import cv2
#高斯金字塔
def pyramid_demo(image):
level = 2
temp = image.copy()
pyramid_images = []
for i in range(level):
dst = cv2.pyrDown(temp)
pyramid_images.append(dst)
cv2.imshow("pyramid"+str(i+1), dst)
temp = dst.copy()
return pyramid_images
#拉普拉斯金字塔
def lapalian_demo(image):
pyramid_images = pyramid_demo(image)
level = len(pyramid_images)
for i in range(level-1, -1, -1):
if (i-1) < 0:
expand = cv2.pyrUp(pyramid_images[i], dstsize = image.shape[:2])
lpls = cv2.subtract(image, expand)
cv2.imshow("lapalian_down_"+str(i+1), lpls)
else:
expand = cv2.pyrUp(pyramid_images[i], dstsize = pyramid_images[i-1].shape[:2])
lpls = cv2.subtract(pyramid_images[i-1], expand)
cv2.imshow("lapalian_down_"+str(i+1), lpls)
src = cv2.resize(cv2.imread('shiyuan.png'),(256,256))
cv2.namedWindow('input_image')
cv2.imshow('input_image', src)
lapalian_demo(src)
cv2.waitKey(0)
cv2.destroyAllWindows()

"""直方圖均衡化"""
import cv2
import numpy as np
img = cv2.imread('bai.png',0)
img = cv2.resize(img,(400,300))
equ = cv2.equalizeHist(img)
cv2.imshow('img',equ)
cv2.waitKey()
cv2.destroyAllWindows()
函數 |
功能 |
cv2.blur( ) |
均值濾波 |
cv2.GaussianBlur( ) |
高斯濾波 |
cv2.medianBlur( ) |
中值濾波 |
cv2.bilateralFilter( ) |
雙邊濾波 |
"""平滑、銳化"""
import cv2
img = cv2.imread('shiyuan.png')
img = cv2.resize(img,(300,300))
img1 = cv2.blur(img,(11,11))
img2 = cv2.GaussianBlur(img,(11,11),0)
img3 = cv2.medianBlur(img,11)
img4 = cv2.bilateralFilter(img,9,75,75)
M = np.ones((5, 5), np.float32) / 25
img5 = cv.filter2D(img, -1, M)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.imshow('img4',img4)
cv2.imshow('img5',img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
函數 |
功能 |
cv2.erode( ) |
腐蝕 |
cv2.dilate( ) |
膨脹 |
cv2.morphologyEx(,cv2.MORPH_OPEN) |
開運算 |
cv2.morphologyEx(,cv2.MORPH_CLOSE) |
閉運算 |
cv2.morphologyEx(,cv2.MORPH_TOPHAT) |
頂帽運算 |
cv2.morphologyEx(,cv2.MORPH_BLACKHAT) |
底帽運算 |
cv2.morphologyEx(,cv2.MORPH_GRADIENT) |
形態學梯度 |
"數學形態學"
import cv2
img = cv2.imread('shiyuan.png')
img = cv2.resize(img,(300,300))
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
img1 = cv2.dilate(img, kernel)
img2 = cv2.erode(img,kernel)
#設置結構元
kernel_rect=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
kernel_cross=cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
kernel_ellipse=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
#圖像開運算處理
open_rect=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel_rect)
open_cross=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel_cross)
open_ellipse=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel_ellipse)
#圖像閉運算處理
close_rect=cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel_rect)
close_cross=cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel_cross)
close_ellipse=cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel_ellipse)
gradient_rect = cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel_rect)
gradient_cross = cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel_cross)
gradient_ellipse = cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel_ellipse)
#頂帽變換
tophat_rect=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel_rect)
tophat_cross=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel_cross)
tophat_ellipse=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel_ellipse)
#頂帽變換
blackhat_rect=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel_rect)
blackhat_cross=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel_cross)
blackhat_ellipse=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel_ellipse)
cv2.imshow('blackhat_rect',blackhat_rect)
cv2.imshow('blackhat_cross',blackhat_cross)
cv2.imshow('blackhat_ellipse',blackhat_ellipse)
cv2.imshow('tophat_rect',tophat_rect)
cv2.imshow('tophat_cross',tophat_cross)
cv2.imshow('tophat_ellipse',tophat_ellipse)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('open_rect',open_rect)
cv2.imshow('open_cross',open_cross)
cv2.imshow('open_ellipse',open_ellipse)
cv2.imshow('close_rect',close_rect)
cv2.imshow('close_cross',close_cross)
cv2.imshow('close_ellipse',close_ellipse)
cv2.imshow('gradient_rect',gradient_rect)
cv2.imshow('gradient_cross',gradient_cross)
cv2.imshow('gradient_ellipse',gradient_ellipse)
cv2.waitKey(0)
cv2.destroyAllWindows()

函數 |
功能 |
cv2.threshold(,cv2.THRESH_BINARY) |
二值化閾值 |
cv2.threshold(,cv2.THRESH_BINARY_INV) |
反二值化閾值 |
cv2.threshold(,cv2.THRESH_TOZERO) |
低閾值零處理 |
cv2.threshold(,cv2.THRESH_TOZERO_INV) |
超閾值零處理 |
cv2.threshold(,cv2.THRESH_OSTU) |
大津算法 |
cv2.threshold(,cv2.THRESH_TRIANGLE) |
截斷閾值化處理 |
cv2.adaptiveThreshold(,,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,) |
自適應閾值處理 |
cv2.adaptiveThreshold(,,cv2.ADAPTIVE_THRESH_MEAN_C,) |
自適應閾值處理 |
"閾值分割"
import cv2
img = cv2.imread('shiyuan.png')
img = cv2.resize(img,(400,300))
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,img1 = cv2.threshold(img,110,255,cv2.THRESH_BINARY)
ret,img2 = cv2.threshold(img,110,255,cv2.THRESH_BINARY_INV)
ret,img3 = cv2.threshold(img,110,255,cv2.THRESH_TOZERO)
ret,img4 = cv2.threshold(img,110,255,cv2.THRESH_TOZERO_INV)
ret,img5 = cv2.threshold(img,110,255,cv2.THRESH_TRUNC)
ret,img6 = cv2.threshold(img,110,255,cv2.THRESH_TRIANGLE)
ret,img7 = cv2.threshold(img,110,255,cv2.THRESH_OTSU)
ret,img8 = cv2.threshold(cv2.GaussianBlur(img,(7,7),0),110,255,cv2.THRESH_OTSU)
img9 = cv2.adaptiveThreshold(img,127, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 9, 11)
img10 = cv2.adaptiveThreshold(img,127,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,9,11)
cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.imshow('img4',img4)
cv2.imshow('img5',img5)
cv2.imshow('img6',img6)
cv2.imshow('img7',img7)
cv2.imshow('img8',img8)
cv2.imshow('img9',img9)
cv2.imshow('img10',img10)
cv2.waitKey(0)
cv2.destroyAllWindows()
函數 |
功能 |
cv2.Canny( ) |
Canny算子 |
cv2.findContours( ) |
輪廓檢測 |
cv2.filter2D( ) |
邊緣提取 |
"邊緣檢測"
import cv2
img = cv2.imread('bai.png')
img = cv2.resize(img,(400,300))
img1 = cv2.Canny(img,123,5)
cv2.imshow('img1',img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
"""邊緣檢測"""
import cv2
img = cv2.imread('bai.png')
img = cv2.resize(img,(400,300))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,contours,-1,(0,0,255),1)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
"""邊緣檢測"""
import cv2
import numpy as np
def find_contours(kernel):
img = cv2.imread('bai.png')
img = cv2.resize(img,(400,300))
img1 = cv2.filter2D(img,-1,kernel)
cv2.imshow('img1',img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel1 = np.array((
[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125, 0.0625]), dtype="float32")
#Sobel算子
kernel2 = np.array(([-1,-2,-1],
[0,0,0],
[1,2,1]))
kernel3 = np.array(([-2,-1,0],
[-1,1,1],
[0,-1,-2]))
kernel4 = np.array([[-1,-1,-1],
[-1,8,-1],
[-1,-1,-1]])
kernel5 = np.array([[0,-1,0],
[-1,5,-1],
[0,-1,0]])
kernel6 = np.array([[0,1,0],
[1,-4,1],
[0,1,0]])
find_contours(kernel1)
find_contours(kernel2)
find_contours(kernel3)
find_contours(kernel4)
find_contours(kernel5)
find_contours(kernel6)

函數 |
功能 |
cv2.cvtColor(,cv2.COLOR_BGR2GRAY) |
圖像灰度化 |
cv2.cvtColor(,cv2.COLOR_BGR2HSV) |
RGB轉HSV |
"""色彩空間"""
import cv2
img = cv2.imread('bai.png')
img = cv2.resize(img,(400,300))
img1 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

函數 |
功能 |
cv2.line( ) |
繪制直線 |
cv2.circle( ) |
繪制圓圈 |
cv2.ellipse( ) |
繪制橢圓 |
cv2.rectangle( ) |
繪制矩形 |
cv2.arrowedLine( ) |
繪制箭頭 |
cv2.putText( ) |
繪制文本 |
"""形狀繪制"""
import cv2
img = cv2.imread('bai.png')
img = cv2.resize(img,(400,300))
imgx = img.copy()
imgy = img.copy()
imgz = img.copy()
imgw = img.copy()
img = cv2.resize(img,(400,300))
img1 = cv2.line(img,(10,10),(200,300),(0,0,255),2)
img2 = cv2.circle(imgx,(60,60),30,(0,0,213),-1)
img3 = cv2.rectangle(imgy,(10,10),(100,80),(0,0,200),2)
img4 = cv2.ellipse(imgz,(256,256),(50,40),0,5,360,(20,213,79),-1)
font=cv2.FONT_HERSHEY_SIMPLEX
img5 = cv2.putText(imgw,'opencv',(80,90), font, 2,(255,255,255),3)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.imshow('img4',img4)
cv2.imshow('img5',img5)
cv2.waitKey(0)
cv2.destroyAllWindows()


寫在最后

資料包
下一期將扒拉sklearn庫,該庫是做機器學習的不二之選,歡迎大家搬好小板凳呀!