大數據是一個含義廣泛的術語,是指數據集,如此龐大而復雜的,他們需要專門設計的硬件和軟件工具進行處理。該數據集通常是萬億或EB的大小。這些數據集收集自各種各樣的來源:傳感器,氣候信息,公開的信息,如雜志,報紙,文章。大數據產生的其他例子包括購買交易記錄,網絡日志,病歷,軍事監控,視頻和圖像檔案,及大型電子商務。
在大數據和大數據分析,他們對企業的影響有一個興趣高漲。大數據分析是研究大量的數據的過程中尋找模式,相關性和其他有用的信息,可以幫助企業更好地適應變化,並做出更明智的決策
一、Hadoop
Hadoop是一個能夠對大量數據進行分布式處理的軟件框架。但是Hadoop是以一種可靠、高效、可伸縮的方式進行處理的。Hadoopshi是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區服務器,因此它的成本比較低,任何人都可以使用。
1.高可靠性:Hadoop按位存儲和處理數據的能力值得人們信賴。
2.高擴展性:Hadoop是在可用的計算機集簇間分配數據並完成計算任務的,這些集簇可以方便地擴展到數以千計的節點中。
3.高效性:Hadoop能夠在節點之間動態地移動數據,並保證各個節點的動態平衡,因此處理速度非常快。
4.高容錯性:Hadoop能夠自動保存數據的多個副本,並且能夠自動將失敗的任務重新分配。
Hadoop帶有用 Java 語言編寫的框架,因此運行在 Linux 生產平台上是非常理想的。Hadoop 上的應用程序也可以使用其他語言編寫,比如 C++。
Hadoop大數據分析
二、Plotly
這是一款數據可視化工具可兼容JavaScript、MATLAB、Python以及R等語言。Plotly甚至能夠幫助不具備代碼編寫技能或者時間的用戶完成動態可視化處理。這款工具常由新一代數據科學家使用,因為其屬於一款業務開發平台且能夠快速完成大規模數據的理解與分析。
Plotly的數據可視化
三、Excel軟件
首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟件。
excel的數據可視化
四、Rapidminer
作為另一款大數據處理必要工具,Rapidminer屬於一套開源數據科學平台,且通過可視化編程機制發揮作用。其功能包括對模型進行修改、分析與創建,且能夠快速將結果整合至業務流程當中。Rapidminer目前備受矚目,且已經成為眾多知名數據科學家心目中的可靠工具。
Rapidminer的數據可視化
五、Smartbi
Smartbi是一款功能強大的國產bi報表工具,對比於很多需要比較專業的數學能力和代碼能力才能靈活運用的大數據分析工具來說,Smartibi不需要太專業的人員來操作,只要對數據有需要處理的需求就可以通過Smartbi的數據分析讓數據可視化,方便用戶直觀了解有價值的數據。
Smartbi的智能化顯示