創建MindSpore虛擬環境
- 創建虛擬環境並安裝依賴庫
conda create -n mindspore python=3.7.5 cudatoolkit=10.1 cudnn=7.6.5 gmp=6.1.2 nccl openmpi
或者分步安裝:
conda create -n mindspore python=3.7.5
conda activate mindspore
conda install cudatoolkit=10.1 cudnn=7.6.5
conda install gmp=6.1.2
conda install nccl
conda install openmpi
打印環境所有安裝的庫:
conda list

# packages in environment at /home/devil/anaconda3/envs/mindspore: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 4.5 1_gnu asttokens 2.0.5 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi ca-certificates 2021.5.25 h06a4308_1 certifi 2021.5.30 py37h06a4308_0 cffi 1.14.5 pypi_0 pypi cudatoolkit 10.1.243 h6bb024c_0 cudnn 7.6.5 cuda10.1_0 decorator 5.0.9 pypi_0 pypi easydict 1.9 pypi_0 pypi gmp 6.1.2 h6c8ec71_1 libedit 3.1.20210216 h27cfd23_1 libffi 3.2.1 hf484d3e_1007 libgcc-ng 9.3.0 h5101ec6_17 libgfortran-ng 7.5.0 ha8ba4b0_17 libgfortran4 7.5.0 ha8ba4b0_17 libgomp 9.3.0 h5101ec6_17 libstdcxx-ng 9.3.0 hd4cf53a_17 mindspore-gpu 1.2.1 pypi_0 pypi mpi 1.0 openmpi mpmath 1.2.1 pypi_0 pypi nccl 2.8.3.1 hcaf9a05_0 ncurses 6.2 he6710b0_1 numpy 1.21.0 pypi_0 pypi openmpi 4.0.2 hb1b8bf9_1 openssl 1.1.1k h27cfd23_0 packaging 21.0 pypi_0 pypi pillow 8.3.0 pypi_0 pypi pip 21.1.3 py37h06a4308_0 protobuf 3.17.3 pypi_0 pypi psutil 5.8.0 pypi_0 pypi pycparser 2.20 pypi_0 pypi pyparsing 2.4.7 pypi_0 pypi python 3.7.5 h0371630_0 readline 7.0 h7b6447c_5 scipy 1.7.0 pypi_0 pypi setuptools 52.0.0 py37h06a4308_0 six 1.16.0 pypi_0 pypi sqlite 3.33.0 h62c20be_0 sympy 1.8 pypi_0 pypi tk 8.6.10 hbc83047_0 wheel 0.36.2 pyhd3eb1b0_0 xz 5.2.5 h7b6447c_0 zlib 1.2.11 h7b6447c_3
所安裝的依賴軟件庫和官方給出的有一定差別,但是后面驗證發現可以正常使用,因此這樣安裝是完全可以的。
具體說明,參考:https://zhuanlan.zhihu.com/p/364284533
為 cuda 和 cudnn 配置環境路徑:
本人使用anaconda3創建的Python環境地址為:
/home/devil/anaconda3/envs/mindspore/
在 anaconda3中配置環境:
創建文件夾 etc/conda/activate.d :
mkdir -p etc/conda/activate.d
配置進入虛擬環境后加入的環境變量:
vim /home/devil/anaconda3/envs/mindspore/etc/conda/activate.d/env_vars.sh
配置內容:
# add library path export LD_LIBRARY_PATH=/home/devil/anaconda3/envs/mindspore/lib:$LD_LIBRARY_PATH # then, add system path export PATH=/home/devil/anaconda3/envs/mindspore/bin:$PATH # you should modify the code as: # export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/{your_path_to_install_conda}/envs/{your_virtual_env_name}/lib # export PATH=$PATH:/{your_path_to_install_conda}/envs/{your_virtual_env_name}/bin
退出環境,重新進入:
conda deactivate mindspore
conda activate mindspore
測試是否安裝配置成功:
測試文件:
import numpy as np from mindspore import Tensor import mindspore.ops as ops import mindspore.context as context context.set_context(device_target="GPU") x = Tensor(np.ones([1,3,3,4]).astype(np.float32)) y = Tensor(np.ones([1,3,3,4]).astype(np.float32)) print(ops.add(x, y))
成功運行,證明雖然安裝的軟件版本與官方的有略微差別但是其兼容性還是不影響code的運行的。
==============================================================
參考:
https://zhuanlan.zhihu.com/p/364284533