在上一篇的文章里我詳細介紹了BAM(SAM/CRAM)的格式和一些需要注意的細節,還說了該如何使用samtools在命令行中對其進行操作。但是很多時候這些操作是不能滿足我們的實際需要的,比如統計比對率、計算在某個比對質量值之上的read有多少,或者計算PE比對的插入片段長度分布,甚至需要你根據實際情況編寫一個新的變異檢測算法等。這個時候往往難以直接通過samtools來實現【注】,而是需要編寫專門的程序進行計算。因此,在這一篇文章里我們就一起來學習應該如何在程序中借助Pysam來處理BAM文件。
【注】關於統計比對率其實是可以通過samtools
stats計算獲得的。不過我們這篇文章不是為了爭辯samtools能做什么,不能做什么,而是要跟大家討論該如何編寫程序處理BAM。
不過,在開始之前我想稍微再補充一下上一節中提到的CRAM――我習慣將其稱為BAM的高壓縮格式,因為它和BAM/SAM的格式基本相同,但有四點我們需要注意一下:
CRAM的高壓縮是通過借助參考序列和對其他信息的進一步編碼來實現的,它相比於BAM有着更高的壓縮率,能夠節省30%-50%的空間;
CRAM目前的IO效率沒有BAM高(壓得密嘛),約慢30%,但在不斷進步,現在已經更新到了3.x版本了;
CRAM和BAM可以通過samtools或者picard方便地實現互轉;
CRAM一定會取代BAM,這話並不是我說的,而是bwa/samtools的作者lh3說的。
什么是Pysam
Pysam是一個專門用來處理(BAM/CRAM/SAM)比對數據和變異數據(VCF和BCF)的Python包。它的核心是htslib――一個高通量數據處理API(來自samtools和bwa的核心,基於C語言),開發者們用Python對它直接進行輕量級包裝,因此能夠在Python中方便地進行調用,並且保證了它與原生C-
API功能上的高度一致。
為什么是Pysam
因為Pysam可以說是最為官方的版本,有比較固定的開發者在維護,它的穩定性和可靠性都很高。雖然還有一些其它的包同樣能夠處理BAM但其實它們大多繞不開對htslib的使用,但卻沒有pysam周全。而且Pysam還集成了tabix的接口,所以除了比對數據之外,還能夠用於處理所有用tabix構建過索引的文件,總之就是全且可靠。
如果是文本格式的sam的話,其實也可以直接將其當作普通文本文件來處理,不需借助任何程序包(這在早期的數據分析中經常看到這種操作),只是要麻煩很多(必須自己在程序中處理所有細節,包括解析FLAG和CIGAR信息,以前我也干過不少類似的事情),甚至我還看到有人直接在程序中調用samtools
view把BAM轉換成SAM之后再處理的。。。這樣的做法實在不推薦。
所以,只要你用的是Python,那么Pysam真的是目前看來比較好的選擇。當然如果你用C/C++那么直接用htslib或者bamtools,如果是Java,那么直接使用htsjdk――htslib的java版本。
如何使用Pysam

首先,要為我們的Python環境安裝這個包,如果已安裝過的話可以忽略這一步。有兩個方法,pip和bioconda,都比較簡單,我們這里以pip――Python的包管理工具來進行:
$ pip install pysam
安裝完成之后我們就可以在Python程序中調用pysam了。
讀取BAM/CRAM/SAM文件
Pysam中的函數有很多,但是重要的讀取函數主要有:
- AlignmentFile:讀取BAM/CRAM/SAM文件
- VariantFile:讀取變異數據(VCF或者BCF)
- TabixFile:讀取由tabix索引的文件;
- FastaFile:讀取fasta序列文件;
- FastqFile:讀取fastq測序序列文件;
等以上幾個,其中尤以AlignmentFile和VariantFile為核心。需要我們注意到的地方是,Pysam中的有些函數由於歷史原因存在重復,比如名字上只有大小寫的差異,但功能卻是一樣的(比如下圖的TabixFile),有些則只是簡化了函數名,這些情況用的時候留個心眼就行了。

另外,這篇文章的目的是介紹如何處理比對文件,所以我打算只介紹AlignmentFile。
讀取比對文件前,我建議先使用samtools
index為比對文件構建好索引。當然如果是SAM文件就不必了――它是文本文件,索引的作用是讓我們可以對文件進行隨機讀取,而不必總是從頭開始。
下面我先用一個例子作為引子:
import pysam
bf = pysam.AlignmentFile('in.bam', 'rb')
我在這個例子里面,先在程序中導入pysam包,然后調用AlignmentFile函數讀取'in.bam'文件,並把句柄賦值給了bf,bf其實是一個迭代器――Python中的術語,意思就是適合在for循環中進行遍歷的對象。
這樣我們就是可以通過bf獲取這份比對文件中的內容了。比如我們想把in.bam中每一條read的比對位置(包含染色體編號和位置信息),比對質量值和插入片段長度輸出(我們的in.bam來自PE測序數據的結果),那么可以這樣做:
import pysam
bf = pysam.AlignmentFile('in.bam', 'rb')
for r in bf:
print r.reference_name, r.pos, r.mapq, r.isize
是不是很簡單!打開in.bam文件之后,用for循環對其從頭到尾地遍歷,並把每個值都賦給r,r在這里代表的就是比對的read信息,它是一個對象(在Pysam由AlignedSegment定義),通過它就可以獲取所有的比對信息,比如上面例子中:
- r.reference_name代表read比對到的參考序列染色體id;
- r.pos代表read比對的位置;
- r.mapq代表read的比對質量值;
- r.isize代表PE read直接的插入片段長度,有時也稱Fragment長度;
這里例子的結果如下:
chrM 160 50 235
chrM 161 30 -283
chrM 314 60 -207
...
另外,由於bf是一個迭代器,我們其實還可以用bf.next()一個一個地對其進行訪問,而不必在for循環中遍歷,這在一些特殊的情況下,這個做法是非常有用且方便的。
當然,上面這個例子其實非常簡單,實際上r變量中還有很多其它關於比對的信息,下面這個截圖,就是變量中能夠獲取到的所有比對相關的信息,有好幾十個。

眼尖的同學可能也發現了,這里面存在一些名字類似的變量,如:r.mapping_quality 和
r.mapq,它們其實都是比對質量值。類似的也還有幾個,這都是上面我提到的歷史原因所致,不過這種多余變量隨着Pysam的維護也正在逐步變少。
此外,Pysam中的位點坐標體系是0-base(意思是染色體的起始位置是從0而不是1開始算的)而不是1-base,所以上面的輸出的160,其實真實位置應該要+1,也就是161。
還有,上文我也說過,AlignmentFile除了能夠讀/寫BAM之外,還同樣能夠讀/寫CRAM和SAM。區別就在於函數中的第二個參數,比如上面例子中的字符'b'就是用於明確指定BAM文件,'r'字符代表“只讀”模式(read首字母)。如果要打開CRAM文件,只需要把b換成c(代表CRAM)就行了,如下:
import pysam
cf = pysam.AlignmentFile('in.cram', 'rc')
那么,如果是SAM文件呢?去掉b或c即可:
import pysam
sf = pysam.AlignmentFile('in.sam', 'r')
讀取特定比對區域內的數據
有時候我們並不需要遍歷整一份BAM文件,我們可能只想獲得區中的某一個區域(比如chrM中301-310中的信息),那么這個時候可以用Alignmen模塊中的fetch函數:
import pysam
bf = AlignmentFile('in.bam', 'rb')
for r in bf.fetch('chrM', 300, 310):
print r
bf.close()
通過fetch函數就可以定位特定區域了,非常方便。不過,這個時候輸入文件in.bam就必須要有索引,不然無法實現這種讀取操作。最后用完了,要記得關閉文件(bf.close())。
來個稍微難一點的例子
問題:如何輸出覆蓋在某個位置上,比對質量值大於30的所有鹼基?
這個問題包含兩個部分:
- 固定的某個位置(我們這里還是用chrM 301這個位置)
- read比對質量值必須是大於30。
如何做呢?這個時候我們要用AlignmentFile模塊的另一個函數――pileups來協助解決,代碼如下:
import pysam
bf = pysam.AlignmentFile("in.bam", "rb" )
for pileupcolumn in bf.pileup("chrM", 300, 301):
for read in [al for al in pileupcolumn.pileups if al.alignment.mapq>30]:
if not read.is_del and not read.is_refskip:
if read.alignment.pos + 1 == 301:
print read.alignment.reference_name,\
read.alignment.pos + 1,\
read.alignment.query_sequence[read.query_position]
bf.close()
這段代碼看起來雖然簡單,但其實包含了很多信息。總的來說,就是通過pileup獲取了所有覆蓋到該位置的read,並將其存到pileupcolumn中。然后,對pileupcolumn調用pileups(注意多了一個s)獲得一條read中每個比對位置的信息(一條read那么長,並非只覆蓋了一個位置),然后通過判斷語句留下覆蓋到目標位點(301)的鹼基。代碼中的read.alignment是Pysam中AlignedSegment對象,它包含的內容和上述其它例子中的r是一樣的。read.alignment.pos
- 1還是0-base的原因。最后結果如下:
chrM 301 A
chrM 301 A
chrM 301 A
chrM 301 C
chrM 301 C
chrM 301 C
chrM 301 C
chrM 301 C
chrM 301 C
chrM 301 C
...
創建BAM/CRAM/SAM文件
最后這個例子,我想告訴大家該如何用Pysam輸出BAM/CRAM/SAM格式,具體還是看代碼吧,這里想輸出結果是BAM文件,所以輸出模式是“wb”,例子中我們只輸出一條比對結果作為說明。
import pysam
header = {'HD': {'VN': '1.0'},
'SQ': [{'LN': 1575, 'SN': 'chr1'},
{'LN': 1584, 'SN': 'chr2'}]
}
tmpfilename = "out.bam"
with pysam.AlignmentFile(tmpfilename, "wb", header=header) as outf:
a = pysam.AlignedSegment() # 定義一個AlignedSegment對象用於存儲比對信息
a.query_name = "read_28833_29006_6945"
a.query_sequence="AGCTTAGCTAGCTACCTATATCTTGGTCTTGGCCG"
a.flag = 99
a.reference_id = 0
a.reference_start = 32
a.mapping_quality = 20
a.cigar = ((0,10), (2,1), (0,25))
a.next_reference_id = 0
a.next_reference_start=199
a.template_length=167
a.query_qualities = pysam.qualitystring_to_array("<<<<<<<<<<<<<<<<<<<<<:<9/,&,22;;<<<")
a.tags = (("NM", 1),
("RG", "L1"))
outf.write(a)
小結
我寫這篇文章的目的主要有兩個:第一,充實上一篇文章中關於如何操作BAM的內容;第二,介紹Pysam這一個值得使用的包給大家。另外,我上面列舉的例子其實都比較偏於基礎操作,這可能和我自身對認知的看法有關。我一直認為,只有真正理解並靈活地應用基礎操作,才可以靈活地解決一切復雜的問題。
而且,上面幾個例子中用到的模塊和函數其實都是比較常用的,所以我比較推薦優先掌握它們。這些例子里面用到的數據我已放到github了,感興趣的同學可以在公眾號后台回復“WGS”即可獲得,后續也會陸續有其它的代碼和數據可供參考。
最后,Pysam的內容其實還有很多,我所介紹的也僅在對於比對數據的處理,其它很多的模塊和函數,包括對Fasta,Fastq,VCF,BCF和Tabix文件的處理,我就不進行一一介紹了,建議大家在使用的時候多看看它的
完整文檔 。
以上所述是小編給大家介紹的使用Python處理BAM的方法,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復大家的。在此也非常感謝大家對腳本之家網站的支持!

