背景
生產環境偶爾會有一些慢請求導致系統性能下降,吞吐量下降,下面介紹幾種優化建議。
方案
1、undertow替換tomcat
電子商務類型網站大多都是短請求,一般響應時間都在100ms,這時可以將web容器從tomcat替換為undertow,下面介紹下步驟:1、增加pom配置
-
<dependency>
-
<groupid>org.springframework.boot</groupid>
-
<artifactid>spring-boot-starter-web</artifactid>
-
<exclusions>
-
<exclusion>
-
<groupid>org.springframework.boot</groupid>
-
<artifactid>spring-boot-starter-tomcat</artifactid>
-
</exclusion>
-
</exclusions>
-
</dependency>
-
<dependency>
-
<groupid>org.springframework.boot</groupid>
-
<artifactid>spring-boot-starter-undertow</artifactid>
-
</dependency>
2、增加相關配置
-
server:
-
undertow:
-
direct-buffers: true
-
io-threads: 4
-
worker-threads: 160
重新啟動可以在控制台看到容器已經切換為undertow了
2、緩存
將部分熱點數據或者靜態數據放到本地緩存或者redis中,如果有需要可以定時更新緩存數據
3、異步
在代碼過程中我們很多代碼都不需要等返回結果,也就是部分代碼是可以並行執行,這個時候可以使用異步,最簡單的方案是使用springboot提供的@Async注解,當然也可以通過線程池來實現,下面簡單介紹下異步步驟。1、pom依賴 一般springboot引入web相關依賴就行
-
<dependency>
-
<groupid>org.springframework.boot</groupid>
-
<artifactid>spring-boot-starter-web</artifactid>
-
</dependency>
2、在啟動類中增加@EnableAsync注解
-
@EnableAsync
-
@SpringBootApplication
-
public class AppApplication
-
{
-
public static void main(String[] args)
-
{
-
SpringApplication.run(AppApplication.class, args);
-
}
-
}
3、需要時在指定方法中增加@Async注解,如果是需要等待返回值,則demo如下
-
@Async
-
public Future< string> doReturn(int i){
-
try {
-
// 這個方法需要調用500毫秒
-
Thread.sleep( 500);
-
} catch (InterruptedException e) {
-
e.printStackTrace();
-
}
-
/ 消息匯總
-
return new AsyncResult<>("異步調用");
-
}
4、如果有線程變量或者logback中的mdc,可以增加傳遞
-
import org.slf4j.MDC;
-
import org.springframework.context.annotation.Configuration;
-
import org.springframework.core.task.TaskDecorator;
-
import org.springframework.scheduling.annotation.AsyncConfigurerSupport;
-
import org.springframework.scheduling.annotation.EnableAsync;
-
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
-
-
import java.util.Map;
-
import java.util.concurrent.Executor;
-
-
/**
-
* @Description:
-
*/
-
@EnableAsync
-
@Configuration
-
public class AsyncConfig extends AsyncConfigurerSupport {
-
@Override
-
public Executor getAsyncExecutor() {
-
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
-
executor.setTaskDecorator( new MdcTaskDecorator());
-
executor.initialize();
-
return executor;
-
}
-
}
-
-
class MdcTaskDecorator implements TaskDecorator {
-
-
@Override
-
public Runnable decorate(Runnable runnable) {
-
Map< string, string> contextMap = MDC.getCopyOfContextMap();
-
return () -> {
-
try {
-
MDC.setContextMap(contextMap);
-
runnable.run();
-
} finally {
-
MDC.clear();
-
}
-
};
-
}
-
}
5、有時候異步需要增加阻塞
-
import lombok.extern.slf4j.Slf4j;
-
import org.springframework.context.annotation.Bean;
-
import org.springframework.context.annotation.Configuration;
-
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
-
-
import java.util.concurrent.Executor;
-
import java.util.concurrent.ThreadPoolExecutor;
-
-
@Configuration
-
@Slf4j
-
public class TaskExecutorConfig {
-
-
@Bean( "localDbThreadPoolTaskExecutor")
-
public Executor threadPoolTaskExecutor() {
-
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
-
taskExecutor.setCorePoolSize( 5);
-
taskExecutor.setMaxPoolSize( 200);
-
taskExecutor.setQueueCapacity( 200);
-
taskExecutor.setKeepAliveSeconds( 100);
-
taskExecutor.setThreadNamePrefix( "LocalDbTaskThreadPool");
-
taskExecutor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor executor) -> {
-
if (!executor.isShutdown()) {
-
try {
-
Thread.sleep( 300);
-
executor.getQueue().put(r);
-
} catch (InterruptedException e) {
-
log.error(e.toString(), e);
-
Thread.currentThread().interrupt();
-
}
-
}
-
}
-
);
-
taskExecutor.initialize();
-
return taskExecutor;
-
}
-
-
-
}
4、業務拆分
可以將比較耗時或者不同的業務拆分出來提供單節點的吞吐量
5、集成消息隊列
有很多場景對數據實時性要求不那么強的,或者對業務進行業務容錯處理時可以將消息發送到kafka,然后延時消費。舉個例子,根據條件查詢指定用戶發送推送消息,這里可以時按時、按天、按月等等,這時就