1 可使用工具包
- pylandstats
- 此工具包基本是根據fragstats形成的,大部分fragstats里面的景觀指數,這里都可以計算。但是,還是有一小部分指數這里沒有涉及。
- LS_METRICS
2 自定義的aggregation index(AI)計算
2.1 原理
\[AI=\frac{e_{ii}}{max\_e_{ii}}\times100 \]
-
這里的\(e_{ii}\)是同類型像元公共邊的個數
-
\(max\_e_{ii}\)是同類型像元最大公共邊的個數, \(max\_e_{ii}\)的計算有公式可尋,具體計算公式如下:
\[\begin{align*} & max\_eii = 2n(n-1), & when \quad m = 0, or\\ & max\_eii = 2n(n-1) + 2m -1, & when\quad m ≤ n, or\\ & max\_eii = 2n(n-1) + 2m -2, & when \quad m > n.\\ \end{align*} \]-
n為不超過某個類型像元總面積\(A_i\)的最大整數正方形的邊長
-
m=\(A_i-n^2\)
-
實例
- 例如圖a中類型1的聚居指數AI可為:
\[\begin{align*} &e_{ii}=12\\ &max\_e{ii}=2n(n-1)=2\times3\times2=12\\ &AI=\frac{e_{ii}}{max\_e{ii}}\times100=100 \end{align*} \]這里AI為100是因為這里乘了一個系數100;
2.2 Python實現
- 函數依賴關系
class AI(Landscape, ABC):
def __init__(self, landscape, **kwargs):
super().__init__(landscape, **kwargs)
# 用於計算每種類型公共邊的數量
def get_share_edge(self, class_):
# 1.將數據轉換為二值型
binary_data = (self.landscape_arr == class_).astype(np.int8)
# 2.設置卷積模板
cov_template = np.array([[0, 0, 0],
[0, 0, 1],
[0, 1, 0]])
# 3.填充邊緣
binary_pad = np.pad(binary_data, 1, mode='constant', constant_values=0)
# 4.計算公共邊總數
row_num, col_num = binary_pad.shape
count = 0
for i in range(1, row_num - 1):
for j in range(1, col_num - 1):
if binary_pad[i, j] == 1:
count += np.sum(binary_pad[i - 1:i + 2, j - 1:j + 2] * cov_template)
return count
# 計算eii
@property
def eii(self):
return pd.Series([self.get_share_edge(class_) for class_ in self.classes], index=self.classes)
# 計算最大的eii
@property
def max_eii(self):
arr = self.landscape_arr
flat_arr = arr.ravel()
# 規避nodata值
if self.nodata in flat_arr:
a_ser = pd.value_counts(flat_arr).drop(self.nodata).reindex(self.classes)
else:
a_ser = pd.value_counts(flat_arr).reindex(self.classes)
n_ser = np.floor(np.sqrt(a_ser))
m_ser = a_ser - np.square(n_ser)
max_eii = pd.Series(index=a_ser.index)
for i in a_ser.index:
if m_ser[i] == 0:
max_eii[i] = (2 * n_ser[i]) * (n_ser[i] - 1)
elif m_ser[i] <= n_ser[i]:
max_eii[i] = 2 * n_ser[i] * (n_ser[i] - 1) + 2 * m_ser[i] - 1
elif m_ser[i] >= n_ser[i]:
max_eii[i] = 2 * n_ser[i] * (n_ser[i] - 1) + 2 * m_ser[i] - 2
return max_eii
# 計算AI指數
def aggregation_index(self, class_val=None):
"""
計算斑塊類型的聚集指數AI
:param class_val: 整型,需要計算AI的斑塊類型代號
:return: 標量數值或者Series
"""
if len(self.classes) < 1:
warnings.warn("當前數組全是空值,沒有需要計算的類型聚集指數",
RuntimeWarning,
)
return np.nan
if class_val is None:
return (self.eii / self.max_eii) * 100
else:
return ((self.eii / self.max_eii) * 100)[class_val]
3 參考文獻
- An aggregation index (AI) to quantify spatial patterns of landscapes
- http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Contagion - Interspersion Metrics/Metrics/C116 - AI.htm