1. 螢火蟲優化算法背景
受螢火蟲發光強度的啟發,2008年,英國劍橋大學學者Xin-She Yang提出螢火蟲算法(Firefly Algorithm, FA)。自然界中,螢火蟲可以發出短促、有節奏的閃光。通常這種閃光僅在一定范圍內可見。螢火蟲通過閃光可以吸引異性和獵取食物。為了使算法更加簡單,該算法只考慮了螢火蟲強度的變化和吸引力這兩個因素。
2. 螢火蟲優化算法理想化數學模型
依照螢火蟲發光的特性,給出以下理想化規則:
(1) 螢火蟲不分雌雄,每個螢火蟲都會被比它發光更亮的螢火蟲吸引;
(2) 吸引力與發光強度成正比;
(3) 螢火蟲的亮度由目標函數值決定。
3. 螢火蟲優化算法的更新過程
3.1 絕對亮度的定義
為了表示螢火蟲\(i\)的亮度隨距離\(r\)的變化,定義如下絕對亮度:
螢火蟲\(i\)絕對亮度為距離\(r=0\)時的亮度,記為\(I_i\).
注意:為了降低算法的復雜度,假定螢火蟲\(i\)的絕對亮度\(I_i\)與\(x_i\)的目標函數值相等。
3.2 相對亮度的定義
為了表示螢火蟲\(i\)對螢火蟲\(j\)的吸引大小,定義如下相對亮度:
螢火蟲\(i\)在螢火蟲\(j\)位置的光強度,記為\(I_{ij}\)
其中,\(\gamma\)為光吸收系數,\(r_{ij}\)為螢火蟲\(i\)到螢火蟲\(j\)的距離.
3.3 吸引力的定義
假設螢火蟲\(i\)對螢火蟲\(j\)的吸引力和螢火蟲\(i\)對螢火蟲\(j\)的相對亮度成比例,所以螢火蟲\(i\)對螢火蟲\(j\)的吸引力可表示為:
其中,\(\beta_0\)為最大吸引力,當距離\(r=0\)時,吸引力最大。通常\(\beta_0=1\),\(\gamma\in{[0.01,100]}\).
3.4 螢火蟲位置更新公式
螢火蟲\(i\)吸引着螢火蟲\(j\),因此螢火蟲\(j\)的位置更新公式:
其中,\(t\)為算法的迭代次數;\(x_i\)、\(x_j\)分別為螢火蟲\(i\)和螢火蟲\(j\)所處的空間位置;\(\alpha\in{[0,1]}\), \(\varepsilon\)是高斯分布得到的隨機向量。
第一版本:
% =========================================================================
% Coder: Lee WenTsao
% Time: 2022-05-14
% Email: liwenchao36@163.com
% Reference: Xin-She Yang, Nature-Inspired Metaheuristic Algorithms,
% Luniver Press, First Edition.
% =========================================================================
%% 清理運行環境
clc
clear
close all
%% 問題定義
option = 2; % 選擇優化函數
dimension = 2; % 維數
[fobj, bound] = Optimizer(option);
lb = bound(1); % 下界
ub = bound(2); % 上界
%% 繪制雲圖
figure(1)
x = linspace(lb, ub, 101);
y = linspace(lb, ub, 101);
z = zeros(101);
for i=1:length(x)
for j=1:length(y)
z(i,j) = fobj([x(i), y(j)]);
end
end
contour(x,y,z); % 函數雲圖顯示
hold on;
%% 螢火蟲參數設置
num_pop = 30; % 初始種群數目
Max_gen = 1000; % 最大迭代次數
beta_0 = 1.0; % 最大吸引力
gamma = 0.1; % 光強吸收系數
alpha = 1.0; % 步長因子
theta = 0.97; % alpha衰減因子
%% 初始化種群
Sol = zeros(num_pop, dimension);
I = zeros(num_pop, 1);
for i=1:num_pop
Sol(i,:) = lb + (ub - lb)*rand(1,dimension); % 初始化種群
I(i) = fobj(Sol(i,:)); % 適應度
end
[fmin, id] = min(I);
best_scores = [fmin];
%% 動態表示
points = scatter(Sol(:,1),Sol(:,2),"ro","filled");
xlim([lb,ub]);
ylim([lb,ub]);
drawnow;
%% 仿真
for iter=1:Max_gen
alpha = alpha*theta;
scale = abs((ub -lb)*ones(1, dimension)); % 優化問題的尺度
for i=1:num_pop
for j=1:num_pop
if I(i)>I(j)
% 計算螢火蟲i和螢火蟲j之間的距離
r = sqrt(sum((Sol(i,:) - Sol(j,:)).^2));
% 計算螢火蟲之間的吸引力
beta = beta_0*exp(-gamma*r.^2);
% 搜索精度
steps = alpha.*(rand(1,dimension) - 0.5).*scale;
% 更新螢火蟲的位置
S = Sol(i,:) + beta*(Sol(j,:) - Sol(i,:)) + steps;
% 螢火蟲越界處理
Tp = S>ub;
Tm = S<lb;
S = S.*(~(Tp+Tm)) + ub.*Tp + lb.*Tm;
% 適應度值
new_fun = fobj(S);
% 進化機制
if new_fun<I(i)
Sol(i,:) = S;
I(i) = new_fun;
end
% 更新最優
if I(i)<fmin
fmin = I(i);
id = i;
end
end
end
end
best_scores = [best_scores,fmin];
reset(points);
points = scatter(Sol(:,1), Sol(:,2), 'ro','filled');
pause(0.1)
%% 輸出
if ~mod(iter,50)
disp(['迭代次數:' num2str(iter) '|| 最優值:' num2str(fmin)]);
end
end
%% 收斂曲線可視化
figure(2)
xx = 1:50:1001;
xxx = 0:50:1000;
plot(xxx,log10(best_scores(xx)),'r','LineWidth',1.5);
hold on;
sz = 40;
scatter(xxx(2:end-1),log10(best_scores(xx(2:end-1))),sz,'ro','filled');
xlabel('$$Iteration$$','Interpreter','latex');
ylabel('$$\log_{10} (fitness)$$','Interpreter','latex');
title('Convergence curve')
xticks(0:50:1000);
楊老師原始版本:
% ---------------------------------------------------------------------- %
% The Firefly Algorithm (FA) for unconstrained function optimization %
% by Xin-She Yang (Cambridge University) @2008-2009 %
% Programming dates: 2008-2009, then revised and updated in Oct 2010 %
% ---------------------------------------------------------------------- %
% References -- citation details: -------------------------------------- %
% (1) Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, %
% Luniver Press, First Edition, (2008). %
% (2) Xin-She Yang, Firefly Algorithm, Stochastic Test Functions and %
% Design Optimisation, Int. Journal of Bio-Inspired Computation, %
% vol. 2, no. 2, 78-84 (2010). %
% ---------------------------------------------------------------------- %
% -------- Start the Firefly Algorithm (FA) main loop ------------------ %
function fa_ndim_new
n=20; % Population size (number of fireflies)
alpha=1.0; % Randomness strength 0--1 (highly random)
beta0=1.0; % Attractiveness constant
gamma=0.01; % Absorption coefficient
theta=0.97; % Randomness reduction factor theta=10^(-5/tMax)
d=10; % Number of dimensions
tMax=500; % Maximum number of iterations
Lb=-10*ones(1,d); % Lower bounds/limits
Ub=10*ones(1,d); % Upper bounds/limits
% Generating the initial locations of n fireflies
for i=1:n,
ns(i,:)=Lb+(Ub-Lb).*rand(1,d); % Randomization
Lightn(i)=cost(ns(i,:)); % Evaluate objectives
end
%%%%%%%%%%%%%%%%% Start the iterations (main loop) %%%%%%%%%%%%%%%%%%%%%%%
for k=1:tMax,
alpha=alpha*theta; % Reduce alpha by a factor theta
scale=abs(Ub-Lb); % Scale of the optimization problem
% Two loops over all the n fireflies
for i=1:n,
for j=1:n,
% Evaluate the objective values of current solutions
Lightn(i)=cost(ns(i,:)); % Call the objective
% Update moves
if Lightn(i)>=Lightn(j), % Brighter/more attractive
r=sqrt(sum((ns(i,:)-ns(j,:)).^2));
beta=beta0*exp(-gamma*r.^2); % Attractiveness
steps=alpha.*(rand(1,d)-0.5).*scale;
% The FA equation for updating position vectors
ns(i,:)=ns(i,:)+beta*(ns(j,:)-ns(i,:))+steps;
end
end % end for j
end % end for i
% Check if the new solutions/locations are within limits/bounds
ns=findlimits(n,ns,Lb,Ub);
%% Rank fireflies by their light intensity/objectives
[Lightn,Index]=sort(Lightn);
nsol_tmp=ns;
for i=1:n,
ns(i,:)=nsol_tmp(Index(i),:);
end
%% Find the current best solution and display outputs
fbest=Lightn(1), nbest=ns(1,:)
end % End of the main FA loop (up to tMax)
% Make sure that new fireflies are within the bounds/limits
function [ns]=findlimits(n,ns,Lb,Ub)
for i=1:n,
nsol_tmp=ns(i,:);
% Apply the lower bound
I=nsol_tmp<Lb; nsol_tmp(I)=Lb(I);
% Apply the upper bounds
J=nsol_tmp>Ub; nsol_tmp(J)=Ub(J);
% Update this new move
ns(i,:)=nsol_tmp;
end
%% Define the objective function or cost function
function z=cost(x)
% The modified sphere function: z=sum_{i=1}^D (x_i-1)^2
z=sum((x-1).^2); % The global minimum fmin=0 at (1,1,...,1)
% -----------------------------------------------------------------------%