tensorflow(三十一):數據分割與K折交叉驗證


一、數據集分割

1、訓練集、測試集

 

 2、訓練集、驗證集、測試集

步驟:

(1)把訓練集60K分成兩部分,一部分50K,另一部分10K。

(2)組合成dataset,並打亂。

二、訓練過程評估

1、訓練的過程評估

其中,第二行是訓練,總輪數是5,每兩輪做一次評估,達到的效果好的話提前停止。

 

 2、在測試集上再次評估

三、K折交叉驗證

(1)第一種方式:手動

解釋:每一輪訓練,一共有6萬數據集,首先產生1到6萬的隨機數,然后對隨機數打散,然后前五萬做訓練集,后一萬做測試。

 

 (2)第二種方式:調用keras的方法。

 四、實戰:數據集分割

import  tensorflow as tf
from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics


def preprocess(x, y):
    """
    x is a simple image, not a batch
    """
    x = tf.cast(x, dtype=tf.float32) / 255.
    x = tf.reshape(x, [28*28])
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)
    return x,y


batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())



db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(60000).batch(batchsz)
ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz) 

sample = next(iter(db))
print(sample[0].shape, sample[1].shape)


network = Sequential([layers.Dense(256, activation='relu'),
                     layers.Dense(128, activation='relu'),
                     layers.Dense(64, activation='relu'),
                     layers.Dense(32, activation='relu'),
                     layers.Dense(10)])
network.build(input_shape=(None, 28*28))
network.summary()




network.compile(optimizer=optimizers.Adam(lr=0.01),
        loss=tf.losses.CategoricalCrossentropy(from_logits=True),
        metrics=['accuracy']
    )

network.fit(db, epochs=5, validation_data=ds_val,
              validation_steps=2)
 
network.evaluate(ds_val)

sample = next(iter(ds_val))
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]
# convert back to number 
y = tf.argmax(y, axis=1)
pred = tf.argmax(pred, axis=1)

print(pred)
print(y)

 五、實戰:交叉驗證

import  tensorflow as tf
from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics


def preprocess(x, y):
    """
    x is a simple image, not a batch
    """
    x = tf.cast(x, dtype=tf.float32) / 255.
    x = tf.reshape(x, [28*28])
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)
    return x,y


batchsz = 128
(x, y), (x_test, y_test) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())



idx = tf.range(60000)
idx = tf.random.shuffle(idx)
x_train, y_train = tf.gather(x, idx[:50000]), tf.gather(y, idx[:50000])
x_val, y_val = tf.gather(x, idx[-10000:]) , tf.gather(y, idx[-10000:])
print(x_train.shape, y_train.shape, x_val.shape, y_val.shape)
db_train = tf.data.Dataset.from_tensor_slices((x_train,y_train))
db_train = db_train.map(preprocess).shuffle(50000).batch(batchsz)

db_val = tf.data.Dataset.from_tensor_slices((x_val,y_val))
db_val = db_val.map(preprocess).shuffle(10000).batch(batchsz)



db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.map(preprocess).batch(batchsz) 

sample = next(iter(db_train))
print(sample[0].shape, sample[1].shape)


network = Sequential([layers.Dense(256, activation='relu'),
                     layers.Dense(128, activation='relu'),
                     layers.Dense(64, activation='relu'),
                     layers.Dense(32, activation='relu'),
                     layers.Dense(10)])
network.build(input_shape=(None, 28*28))
network.summary()




network.compile(optimizer=optimizers.Adam(lr=0.01),
        loss=tf.losses.CategoricalCrossentropy(from_logits=True),
        metrics=['accuracy']
    )

network.fit(db_train, epochs=6, validation_data=db_val, validation_freq=2)

print('Test performance:') 
network.evaluate(db_test)
 

sample = next(iter(db_test))
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]
# convert back to number 
y = tf.argmax(y, axis=1)
pred = tf.argmax(pred, axis=1)

print(pred)
print(y)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM