Pytorch lr_scheduler 中的 last_epoch 用法


The last_epoch parameter is used when resuming training and you want to start the scheduler where it left off earlier. Its value is increased every time you call .step() of scheduler. The default value of -1 indicates that the scheduler is started from the beginning.

From the docs:

Since step() should be invoked after each batch instead of after each epoch, this number represents the total number of batches computed, not the total number of epochs computed. When last_epoch=-1, the schedule is started from the beginning.

For example,

>>> import torch
>>> cc = torch.nn.Conv2d(10,10,3)
>>> myoptimizer = torch.optim.Adam(cc.parameters(), lr=0.1)
>>> myscheduler = torch.optim.lr_scheduler.StepLR(myoptimizer,step_size=1, gamma=0.1)
>>> myscheduler.last_epoch, myscheduler.get_lr()
(0, [0.1])
>>> myscheduler.step()
>>> myscheduler.last_epoch, myscheduler.get_lr()
(1, [0.001])
>>> myscheduler.step()
>>> myscheduler.last_epoch, myscheduler.get_lr()
(2, [0.0001])

Now, if you decide to stop the training in the middle, then resume it, you can provide last_epoch parameter to schedular so that it start from where it was left off, not from the beginning again.

>>> mynewscheduler = torch.optim.lr_scheduler.StepLR(myoptimizer,step_size=1, gamma=0.1, last_epoch=myscheduler.last_epoch)
>>> mynewscheduler.last_epoch, mynewscheduler.get_lr()
(3, [1.0000000000000004e-05])


原文鏈接:https://stackoverflow.com/questions/62724824/what-is-the-param-last-epoch-on-pytorch-optimizers-schedulers-is-for


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM