環境依賴
jdk、neo4j圖數據庫
neo4j具體的安裝過程可以參考這里:https://cloud.tencent.com/developer/article/1387732
json數據
{
"_id": {
"$oid": "5bb578b6831b973a137e3ee6"
},
"name": "肺泡蛋白質沉積症",
"desc": "肺泡蛋白質沉積症(簡稱PAP),又稱Rosen-Castle-man-Liebow綜合征,是一種罕見疾病。該病以肺泡和細支氣管腔內充滿PAS染色陽性,來自肺的富磷脂蛋白質物質為其特征,好發於青中年,男性發病約3倍於女性。",
"category": ["疾病百科", "內科", "呼吸內科"],
"prevent": "1、避免感染分支桿菌病,卡氏肺囊腫肺炎,巨細胞病毒等。\n2、注意鍛煉身體,提高免疫力。",
"cause": "病因未明,推測與幾方面因素有關:如大量粉塵吸入(鋁,二氧化硅等),機體免疫功能下降(尤其嬰幼兒),遺傳因素,酗酒,微生物感染等,而對於感染,有時很難確認是原發致病因素還是繼發於肺泡蛋白沉着症,例如巨細胞病毒,卡氏肺孢子蟲,組織胞漿菌感染等均發現有肺泡內高蛋白沉着。\n雖然啟動因素尚不明確,但基本上同意發病過程為脂質代謝障礙所致,即由於機體內,外因素作用引起肺泡表面活性物質的代謝異常,到目前為止,研究較多的有肺泡巨噬細胞活力,動物實驗證明巨噬細胞吞噬粉塵后其活力明顯下降,而病員灌洗液中的巨噬細胞內顆粒可使正常細胞活力下降,經支氣管肺泡灌洗治療后,其肺泡巨噬細胞活力可上升,而研究未發現Ⅱ型細胞生成蛋白增加,全身脂代謝也無異常,因此目前一般認為本病與清除能力下降有關。",
"symptom": ["紫紺", "胸痛", "呼吸困難", "乏力", "毓卓"],
"yibao_status": "否",
"get_prob": "0.00002%",
"get_way": "無傳染性",
"acompany": ["多重肺部感染"],
"cure_department": ["內科", "呼吸內科"],
"cure_way": ["支氣管肺泡灌洗"],
"cure_lasttime": "約3個月",
"cured_prob": "約40%",
"cost_money": "根據不同醫院,收費標准不一致,省市三甲醫院約( 8000——15000 元)",
"check": ["胸部CT檢查", "肺活檢", "支氣管鏡檢查"],
"recommand_drug": [],
"drug_detail": []
} ......
實例
import os
import json
from py2neo import Graph, Node
class MedicalGraph:
def __init__(self):
cur_dir = '\\'.join(os.path.abspath(__file__).split('\\')[:-1])
self.data_path = os.path.join(cur_dir, 'data\\medical2.json')
self.g = Graph("http://localhost:7474", username="neo4j", password="rhino1qaz@wsx")
def read_nodes(self):
diseases = [] # 疾病
drugs = [] # 葯品
departments = [] # 科室
disease_infos = []
rels_disease_drug = [] #疾病和葯品之間的關系
rels_disease_department = [] #疾病和科室之間的關系
rels_department_department = [] #科室和科室之間的關系
count = 0
for data in open(self.data_path):
disease_dict = {}
count += 1
print(count)
# 讀取每一行數據
data_json = json.loads(data)
print(data_json)
disease = data_json['name']
disease_dict['name'] = disease # 疾病名
diseases.append(disease)
if 'cure_department' in data_json:
cure_department = data_json['cure_department']
if len(cure_department) == 1:
rels_disease_department.append([disease, cure_department[0]])
if len(cure_department) == 2:
big = cure_department[0]
small = cure_department[1]
rels_department_department.append([small, big])
rels_disease_department.append([disease, small])
disease_dict['cure_department'] = cure_department
departments += cure_department
if 'recommand_drug' in data_json:
recommand_drug = data_json['recommand_drug']
drugs += recommand_drug
for drug in recommand_drug:
rels_disease_drug.append([disease, drug])
disease_dict['recommand_drug'] = recommand_drug
disease_infos.append(disease_dict)
return set(diseases), set(drugs), set(departments), disease_infos, \
rels_disease_drug, rels_disease_department, rels_department_department
def create_node(self, label, nodes):
count = 0
for node_name in nodes:
node = Node(label, name=node_name)
self.g.create(node)
count += 1
print(count, len(nodes))
return
'''創建知識圖譜中心疾病的節點'''
def create_diseases_nodes(self, disease_infos):
count = 0
for disease_dict in disease_infos:
node = Node("Disease", name=disease_dict['name'], recommand_drug=disease_dict['recommand_drug'],
cure_department=disease_dict['cure_department'])
self.g.create(node)
count += 1
print(count)
return
'''創建知識圖譜實體節點類型schema'''
def create_graphnodes(self):
diseases, Drugs, Departments, disease_infos, \
rels_disease_drug, rels_disease_department, rels_department_department = self.read_nodes()
self.create_diseases_nodes(disease_infos)
self.create_node('Drug', Drugs)
print(len(Drugs))
self.create_node('Department', Departments)
print(len(Departments))
return
'''創建實體關系邊'''
def create_graphrels(self):
diseases, Drugs, Departments, disease_infos, \
rels_disease_drug, rels_disease_department, rels_department_department = self.read_nodes()
self.create_relationship('Disease', 'Drug', rels_disease_drug, 'recommand_eat', '宜吃')
self.create_relationship('Disease', 'Department', rels_disease_department, 'belongs_to', '所屬科室')
self.create_relationship('Department', 'Department', rels_department_department, 'belongs_to', '屬於')
def create_relationship(self, start_node, end_node, edges, rel_type, rel_name):
count = 0
# 去重處理
set_edges = []
for edge in edges:
set_edges.append('###'.join(edge))
all = len(set(set_edges))
for edge in set(set_edges):
edge = edge.split('###')
p = edge[0]
q = edge[1]
query = "match(p:%s),(q:%s) where p.name='%s'and q.name='%s' create (p)-[rel:%s{name:'%s'}]->(q)" % (
start_node, end_node, p, q, rel_type, rel_name)
try:
self.g.run(query)
count += 1
print(rel_type, count, all)
except Exception as e:
print(e)
return
'''導出數據'''
def export_data(self):
diseases, Drugs, Departments, disease_infos, \
rels_disease_drug, rels_disease_department, rels_department_department = self.read_nodes()
f_disease = open('disease.txt', 'w+')
f_drug = open('drug.txt', 'w+')
f_department = open('department.txt', 'w+')
f_disease.write('\n'.join(list(diseases)))
f_drug.write('\n'.join(list(Drugs)))
f_department.write('\n'.join(list(Departments)))
f_disease.close()
f_drug.close()
f_department.close()
return
if __name__ == '__main__':
medicalGraph = MedicalGraph()
medicalGraph.create_graphnodes()
medicalGraph.create_graphrels()
medicalGraph.export_data()
無非就是連接圖數據庫,然后創建節點、創建關系,當做模板來看就行了,最后結果: