Sink有下沉的意思,在Flink中所謂的Sink其實可以表示為將數據存儲起來的意思,也可以將范圍擴大,表示將處理完的數據發送到指定的存儲系統的輸出操作.
之前我們一直在使用的print方法其實就是一種Sink
public DataStreamSink<T> print(String sinkIdentifier) {
PrintSinkFunction<T> printFunction = new PrintSinkFunction<>(sinkIdentifier, false);
return addSink(printFunction).name("Print to Std. Out");
}
Flink內置了一些Sink, 除此之外的Sink需要用戶自定義!
本次測試使用的Flink版本為1.12
KafkaSink
1)添加kafka依賴
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>1.11.2</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.75</version>
</dependency>
2)啟動Kafka集群
kafka群起腳本鏈接:
https://www.cnblogs.com/traveller-hzq/p/14487977.html
3)Sink到Kafka的實例代碼
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import java.util.Properties;
/**
* TODO
*
* @author hzq
* @version 1.0
* @date 2021/3/5 11:08
*/
public class Flink01_KafkaSink {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> inputDS = env.socketTextStream("localhost", 9999);
// TODO Sink - kafka
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "hadoop1:9092,hadoop2:9092,hadoop3:9092");
FlinkKafkaProducer<String> kafkaSink = new FlinkKafkaProducer<>(
"flink0923",
new SimpleStringSchema(),
properties
);
inputDS.addSink(kafkaSink);
env.execute();
}
}
4.使用 nc -lk 9999命令輸入數據
5.在linux啟動一個消費者, 查看是否收到數據
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic topic_sensor
RedisSink
1)添加Redis連接依賴
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-redis -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.1.5</version>
</dependency>
2)啟動Redis服務器
./redis-server /etc/redis/6379.conf
3)Sink到Redis的示例代碼
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
import java.util.Properties;
/**
* TODO
*
* @author hzq
* @version 1.0
* @date 2021/3/5 11:08
*/
public class Flink02_RedisSink {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> inputDS = env.socketTextStream("localhost", 9999);
// TODO Sink - Redis
FlinkJedisPoolConfig flinkJedisPoolConfig = new FlinkJedisPoolConfig.Builder()
.setHost("hadoop102")
.setPort(6379)
.build();
RedisSink<String> redisSink = new RedisSink<>(
flinkJedisPoolConfig,
new RedisMapper<String>() {
@Override
public RedisCommandDescription getCommandDescription() {
// 第一個參數:redis命令的封裝
// 第二個參數:redis 最外層的 key
return new RedisCommandDescription(RedisCommand.HSET, "flink0923");
}
/*
從數據里提取key,如果是 Hash結構,那么key就是hash的key
*/
@Override
public String getKeyFromData(String data) {
return data.split(",")[1];
}
// 從數據里提取value,如果是 hash結構,那么 value就是hash的value
@Override
public String getValueFromData(String data) {
return data.split(",")[2];
}
}
);
inputDS.addSink(redisSink);
env.execute();
}
}
Redis查看是否收到數據
redis-cli --raw
注意:
發送了5條數據, redis中只有2條數據. 原因是hash的field的重復了, 后面的會把前面的覆蓋掉
ElasticsearchSink
1)添加ES依賴
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-elasticsearch6 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch6_2.11</artifactId>
<version>1.12.0</version>
</dependency>
2)啟動ES集群
3)Sink到ES實例代碼
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* TODO
*
* @author hzq
* @version 1.0
* @date 2021/3/5 11:08
*/
public class Flink03_EsSink {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> inputDS = env.socketTextStream("hadoop102", 9999);
// TODO Sink - ElasticSearch
List<HttpHost> httpHosts = new ArrayList<>();
httpHosts.add(new HttpHost("hadoop102", 9200));
httpHosts.add(new HttpHost("hadoop103", 9200));
httpHosts.add(new HttpHost("hadoop104", 9200));
ElasticsearchSink.Builder<String> esSinkBuilder = new ElasticsearchSink.Builder<>(
httpHosts,
new ElasticsearchSinkFunction<String>() {
@Override
public void process(String element, RuntimeContext ctx, RequestIndexer indexer) {
Map<String, String> dataMap = new HashMap<>();
dataMap.put("data", element);
// ESAPI的寫法
IndexRequest indexRequest = Requests.indexRequest("flink0923").type("dasfgdasf").source(dataMap);
indexer.add(indexRequest);
}
}
);
// TODO 為了演示,bulk設為1,生產環境不要這么設置
esSinkBuilder.setBulkFlushMaxActions(1);
inputDS.addSink(esSinkBuilder.build());
env.execute();
}
}
/*
ES 5.x : index -》 庫, type -》 表
ES 6.x : 每個 index 只能有 一個 type,所以可以認為 index是一個 表
ES 7.x : 移除了 Type
url查看index:
查看 index列表:http://hadoop102:9200/_cat/indices?v
查看 index內容:http://hadoop102:9200/flink0923/_search
*/
Elasticsearch查看是否收到數據
注意
如果出現如下錯誤:
添加log4j2的依賴:
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.14.0</version>
</dependency>
如果是無界流, 需要配置bulk的緩存
esSinkBuilder.setBulkFlushMaxActions(1);
自定義Sink
如果Flink沒有提供給我們可以直接使用的連接器,那我們如果想將數據存儲到我們自己的存儲設備中,怎么辦?
我們自定義一個到Mysql的Sink
1)在mysql中創建數據庫和表
create database test;
use test;
CREATE TABLE `sensor` (
`id` varchar(20) NOT NULL,
`ts` bigint(20) NOT NULL,
`vc` int(11) NOT NULL,
PRIMARY KEY (`id`,`ts`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
2)導入Mysql驅動
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.49</version>
</dependency>
3)寫入到Mysql的自定義Sink實例代碼
import com.atguigu.chapter05.WaterSensor;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* TODO
*
* @author hzq
* @version 1.0
* @date 2021/3/5 11:08
*/
public class Flink04_MySink {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<String> inputDS = env.socketTextStream("hadoop102", 9999);
SingleOutputStreamOperator<WaterSensor> sensorDS = inputDS.map(new MapFunction<String, WaterSensor>() {
@Override
public WaterSensor map(String value) throws Exception {
// 切分
String[] line = value.split(",");
return new WaterSensor(line[0], Long.valueOf(line[1]), Integer.valueOf(line[2]));
}
});
// TODO Sink - 自定義:MySQL
sensorDS.addSink(new MySinkFunction());
env.execute();
}
public static class MySinkFunction extends RichSinkFunction<WaterSensor> {
Connection conn;
PreparedStatement pstmt;
@Override
public void open(Configuration parameters) throws Exception {
conn = DriverManager.getConnection("jdbc:mysql://hadoop102:3306/test", "root", "000000");
pstmt = conn.prepareStatement("insert into sensor values (?,?,?)");
}
@Override
public void close() throws Exception {
if (pstmt != null) {
pstmt.close();
}
if (conn != null){
conn.close();
}
}
@Override
public void invoke(WaterSensor value, Context context) throws Exception {
pstmt.setString(1, value.getId());
pstmt.setLong(2, value.getTs());
pstmt.setInt(3, value.getVc());
pstmt.execute();
}
}
}
/*
*/
使用nc命令輸入命令進行測試