簡介
- OCR(Optical Character Recognition)全稱光學字符識別, 通俗的講就是計算機識別圖像上面的文字並且提取出來。這對提取運算速度以及識別准確率都有很高的要求。
- 兩個項目均CRNN網絡結構
- chineseocr_lite運行方式簡單,PaddleOCR自定義功能強
- 筆者運行環境:Anaconda3的Python3.7 完美運行兩個項目
chineseocr_lite
pip install -r ./requirements.txt -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
python backend/main.py
- 項目運行成功:

- PC界面:
- Android界面:

PaddleOCR
pip install paddlepaddle==2.0.0rc1 -i https://mirror.baidu.com/pypi/simple
pip install paddle
pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
檢測模型:.\PaddleOCR_dygraph\deploy\hubserving\ocr_det
識別模型:.\PaddleOCR_dygraph\deploy\hubserving\ocr_rec
方向分類器:.\PaddleOCR_dygraph\deploy\hubserving\ocr_cls
模型庫下載地址:https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/models_list.md
* 下載對應的模型后解壓,然后修改hubserving目錄下,ocr_det\params.py, ocr_rec\params.py, ocr_cls\params.py, ocr_system\params.py四個文件里的模型路徑
hub install .\deploy\hubserving\ocr_det\
hub install .\deploy\hubserving\ocr_cls\
hub install .\deploy\hubserving\ocr_rec\
hub install .\deploy\hubserving\ocr_system\
hub serving start -c .\deploy\hubserving\ocr_det\config.json
hub serving start -c .\deploy\hubserving\ocr_cls\config.json
hub serving start -c .\deploy\hubserving\ocr_rec\config.json
hub serving start -c .\deploy\hubserving\ocr_system\config.json
python .\tools\test_hubserving.py http://127.0.0.1:8868/predict/ocr_system .\img.jpg