計量經濟學導論13:虛擬變量與雙重差分


虛擬變量與雙重差分

虛擬變量的模型設定

首先我們先對解釋變量中的定性因素和定量因素作以下闡述:

  • 定量因素:可直接測度、數值性的因素;
  • 定性因素:屬性因素,表征某種屬性存在與否的非數值性的因素。

在實際建模中,如何對定性因素進行回歸分析?采用“虛擬變量”對定性變量進行量化是最常用的一種思路。其基本思想為:

  • 直接在回歸模型中加入定性因素存在諸多的困難;
  • 可將這些定性因素進行量化,以達到定性因素能與定量因素有着相同作用之目的;
  • 有些定量因素也可以采取分組的方式來研究。

虛擬變量設置的時候需要考慮以下的基本規則:

  • 總原則為:設置能夠區分所有屬性的最少虛擬變量。
  • 虛擬變量取“1”或“0”的原則,應從分析問題的目的出發予以界定。從理論上講,虛擬變量取“0”值通常代表比較的基礎類型;而虛擬變量取“1”值通常代表被比較的類型。
  • 如果定性因素具有 \(m\) 個相互排斥屬性,當模型中含有截距項時,則只能引入 \(m-1\) 個虛擬變量;當模型中沒有截距項時,則可以引入 \(m\) 個虛擬變量,否則就會陷入“虛擬變量陷阱”。
  • “虛擬變量陷阱”的實質:完全共線性。

虛擬變量的回歸分析

在計量經濟學中,通常引入虛擬變量的方式分為加法方式和乘法方式兩種。

  • 加法方式:

\[Y_i=\alpha_0+\beta_1X_i+u_i+\alpha_1 D_i \ . \]

  • 乘法方式:

\[Y_i=\alpha_0+\beta_1X_i+u_i+\beta_2X_iD_i \ . \]

實質上,加法方式引入虛擬變量改變的是截距,乘法方式引入虛擬變量改變的是斜率。

含有虛擬變量的模型的分析手段:條件期望。

以加法方式引入虛擬變量時,主要考慮的問題是定性因素的屬性和引入虛擬變量的個數。主要有四種情況:

  • 解釋變量只有一個定性變量而無定量變量,而且定性變量為兩種相互排斥的屬性;
  • 解釋變量分別為一個兩種屬性的定性變量和一個定量變量;
  • 解釋變量分別為一個定性變量(兩種以上屬性)和一個定量解釋變量;
  • 解釋變量分別為兩個定性變量(各自分別是兩種屬性)和一個定量解釋變量。

以乘法方式引入虛擬變量時,是在所設立的模型中,將虛擬變量與其它解釋變量的乘積,作為新的解釋變量出現在模型中,以達到其調整設定模型斜率系數的目的。

  • 截距不變的情形:\(Y_i=f(X_i,\,D_iX_i)+u_i\)
  • 截距和斜率均發生變化的情形:\(Y_i=f(X_i,\,D_i,\,D_iX_i)+u_i\)

虛擬變量的綜合應用

所謂虛擬變量的綜合應用是指將引入虛擬解釋變量的加法方式、乘法方式進行綜合使用。基本分析方式仍然是條件期望分析。

結構變化分析

結構變化的實質是檢驗所設定的模型在樣本期內是否為同一模型。顯然,平行回歸、共點回歸、不同的回歸三個模型均不是同一模型。

  • 平行回歸模型的假定是斜率保持不變(加法類型,包括方差分析);
  • 共點回歸模型的假定是截距保持不變(乘法類型,又被稱為協方差分析);
  • 不同的回歸的模型的假定是截距、斜率均為變動的(加法、乘法類型的組合)。

例:比較改革開放前后我國居民平均“儲蓄—收入”總量關系是否發生變化?

模型設定為 :

\[Y_t=\alpha_1+\alpha_2D_t+\beta_1X_t+\beta_2(D_tX_t)+u_t \]

其中:\(Y_t\) 為儲蓄總額,\(X_t\) 為收入總額。

\[D=\left\{\begin{array}{cl} 1 \ \ , & \text{改革開放前} \\ 0 \ \ , & \text{改革開放后} \end{array}\right. \ . \]

條件期望分析:

  • 改革開放后:\({\rm E}(Y_t|X_t,\,D_t=1)=\alpha_1+\alpha_2+(\beta_1+\beta_2)X_t\)
  • 改革開放前:\({\rm E}(Y_t|X_t,\,D_t=0)=\alpha_1+\beta_1X_t\)

只要 \(\alpha_2\)\(\beta_2\) 不同時為零,上述模型就能刻畫改革開放前后我國居民平均“儲蓄—收入”模型結構是否發生變化。

交互效應分析

交互作用:一個解釋變量的邊際效應有時可能要依賴於另一個解釋變量。

例:研究人群的個人收入 \(Y\) 與其教育水平 \(E\) 和所在地區 \(D\) 的關系。

模型設定為:

\[Y=\alpha_0+\alpha_1D_1+\alpha_2D_2+\alpha_3E+\alpha_4D_1E+\alpha_5D_2E+u \ , \]

其中

\[D_1=\left\{\begin{array}{cl} 1 \ \ , & \text{中部} \\ 0 \ \ , & \text{其他} \end{array}\right. \ , \ \ \ \ D_2=\left\{\begin{array}{cl} 1 \ \ , & \text{東部} \\ 0 \ \ , & \text{其他} \end{array}\right. \ , \ \ \ \ E=\left\{\begin{array}{cl} 1 \ \ , & \text{高等} \\ 0 \ \ , & \text{中等} \end{array}\right. \ . \]

各類人員的收入表如下:

西部 \((0,\,0)\) 中部 \((1,\,0)\) 東部 \((0,\,1)\)
中等 \(E=0\) \(\alpha_0\) \(\alpha_0+\alpha_1\) \(\alpha_0+\alpha_2\)
高等 \(E=1\) \(\alpha_0+\alpha_3\) \(\alpha_0+\alpha_1+\alpha_3+\alpha_4\) \(\alpha_0+\alpha_2+\alpha_3+\alpha_5\)

差異性描述:

中部與西部差 東部與西部差 東部與中部差
中等 \(E=0\) \(\alpha_1\) \(\alpha_2\) \(\alpha_2-\alpha_1\)
高等 \(E=1\) \(\alpha_1+\alpha_4\) \(\alpha_2+\alpha_5\) \(\alpha_2-\alpha_1+\alpha_5-\alpha_4\)

各類人員的收入表如下:

西部 \((0,\,0)\) 中部 \((1,\,0)\) 東部 \((0,\,1)\)
高等與中等差 \(\alpha_3\) \(\alpha_3+\alpha_4\) \(\alpha_3+\alpha_5\)

雙重差分模型

雙重差分法,Differences-in-Differences,基本思想就是通過對政策實施前后對照組和實驗組之間差異的比較構造出反映政策效果的雙重差分統計量。首先強調一點,一般而言 DID 僅適用於面板數據模型,但並沒有嚴格意義上面板數據模型所需要的過多的假設,通過引入虛擬變量並通過最小二乘法即可實現參數估計。因此我們在討論面板數據之前,先討論雙重差分模型的應用。

前提假設:

  • 平行趨勢假設:如果實驗組的事件沒有發生,對照組和實驗組的變化趨勢相同。
  • 檢驗方法:比較實驗組和對照組樣本的 \(Y\)\(t\) 的增長率在實驗前有無顯著差異。

模型設定:

\[Y_{it}=\alpha+\alpha_1d_{it}+\alpha_2T_{it}+\beta d_{it}T_{it}+\varepsilon_{it} \]

其中,\(Y_{it}\) 為個體 \(i\)\(t\) 期的結果值,

\[d_{it}=\left\{ \begin{array}{ll} 1 \ \ , & i\,\text{為實驗組} \\ 0 \ \ , & i\,\text{為對照組} \\ \end{array} \right. \]

\[T_{it}=\left\{ \begin{array}{ll} 1 \ \ , & \text{表示實驗后} \\ 0 \ \ , & \text{表示實驗前} \\ \end{array} \right. \]

對 DID 模型取數學期望:

對照組+實驗前

\[{\rm E}(Y_{it}|d_{it}=0,\,T_{it}=0)=\alpha \]

對照組+實驗后

\[{\rm E}(Y_{it}|d_{it}=0,\,T_{it}=1)=\alpha+\alpha_2 \]

實驗組+實驗前

\[{\rm E}(Y_{it}|d_{it}=1,\,T_{it}=0)=\alpha+\alpha_1 \]

對照組+實驗前

\[{\rm E}(Y_{it}|d_{it}=1,\,T_{it}=1)=\alpha+\alpha_1+\alpha_2+\beta \]

為了方便對比參數設定的意義,我們用如下的表格:

對照組 實驗組
實驗前 \(\alpha\) \(\alpha+\alpha_1\)
實驗后 \(\alpha+\alpha_2\) \(\alpha+\alpha_1+\alpha_2+\beta\)
Difference \(\alpha_2\) \(\alpha_2+\beta\)

將雙重差分的思想與上表的內容結合,我們可以得到政策的凈效應:

\[{\rm DID}=\alpha_2+\beta-\alpha_2=\beta \ . \]

關鍵:檢驗交叉項系數 \(\hat\beta\) 是否顯著。

雙重差分模型的優點

  1. 可以很大程度上避免內生性問題的困擾:政策相對於微觀經濟主體而言一般是外生的,因而不存在逆向因果問題。此外,使用固定效應估計一定程度上也緩解了遺漏變量偏誤問題。
  2. 傳統方法下評估政策效應,主要是通過設置一個政策發生與否的虛擬變量然后進行回歸,相較而言,雙重差分法的模型設置更加科學,能更加准確地估計出政策效應。
  3. 雙重差分法的原理和模型設置很簡單,容易理解和運用,並不像空間計量等方法一樣讓人望而生畏。
  4. 盡管雙重差分法估計的本質就是面板數據固定效應估計,但是 DID 聽上去或多或少也要比 OLS、FE 之流更加“時尚高端”,因而 DID 的使用一定程度上可以滿足“虛榮心”。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM