Ubuntu 20.04 安裝 CUDA Toolkit 的三種方式


無論采用哪一種方式,首先都需要更新 Ubuntu 軟件源和升級到最新版本的軟件包。由於國內從 Ubuntu 官方軟件源下載速度比較慢,所以,建議采用國內 Ubuntu 鏡像源,比如阿里 Ubuntu 軟件源清華大學 Ubuntu 軟件源。具體的配置方式是修改配置文件 /etc/apt/sources.list,將其中的 archive.ubuntu.com 替換為 mirrors.alibaba.com 或 mirrors.tuna.tsinghua.edu.cn 。也可以在圖形界面應用 "Software & Update" 中,修改 Ubuntu Software 標簽頁中的 Download from 后的軟件源地址。

配置軟件源后,采用如下命令進行軟件源的更新和軟件包的升級。

sudo apt update sudo apt upgrade

下面介紹在 Ubuntu 20.04 長期支持版本中,安裝 CUDA Tools 的三種方式:

方式一:采用 Ubuntu 軟件源中的 CUDA Tools 軟件包

這種方式安裝簡單,但安裝的 CUDA Toolkit 版本往往不是最新版本。查詢目前可安裝的 CUDA Toolkit 版本的命令,如下所示

apt search nvidia-cuda-toolkit

具體安裝命令如下:

sudo apt install nvidia-cuda-toolkit

方式二:先采用圖形界面安裝 CUDA 驅動,再安裝從 NVIDIA 官網下載的 CUDA Toolkit 安裝包

1)圖形界面安裝 CUDA 驅動

在所有應用中,選擇 “Software & Update” 應用,在標簽頁 "Additional Drivers" 中選擇 “nvidia-driver-450-server”,如下圖所示:

選擇后,單擊 “Apply Changes” 按鈕,這樣就更新並切換到所選驅動。

快捷鍵 Ctrl + Alt + T 打開 Terminal ,運行 nvidia-smi 命令以驗證切換到 CUDA 驅動是否成功。我嘗試過 nvidia-driver-460 這個版本,但沒有成功,因此使用稍低的版本 nvidia-driver-450-server

2)下載並安裝 CUDA Toolkit

本機安裝的 CUDA Toolkit 版本為 11.0.3,與上一步安裝 CUDA 驅動 450 兼容(可以參考下載文件名的尾綴), 具體下載命令,如下

wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run

安裝命令,如下

sudo sh cuda_11.0.3_450.51.06_linux.run 

需要注意,安裝時,選擇不安裝 CUDA 驅動,安裝記錄如下:

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-11.0/
Samples:  Installed in /home/klchang/, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-11.0/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.0/lib64, or, add /usr/local/cuda-11.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.0/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least .00 is required for CUDA 11.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run --silent --driver

Logfile is /var/log/cuda-installer.log

安裝結束后,添加環境變量到 ~/.bashrc 文件的末尾,具體添加內容如下:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64 export PATH=$PATH:/usr/local/cuda/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

保存后退出。

在 Terminal 中,激活環境變量命令為 source ~/.bashrc

測試 CUDA Toolkit 。 通過編譯自帶 Samples並執行, 以驗證是否安裝成功。具體命令如下所示:

cd /usr/local/cuda/samples/1_Utilities/deviceQuery sudo make ./deviceQuery

如果安裝成功,則輸出類似於如下信息:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce RTX 2070 with Max-Q Design"
  CUDA Driver Version / Runtime Version          11.0 / 11.0
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 7982 MBytes (8370061312 bytes)
  (36) Multiprocessors, ( 64) CUDA Cores/MP:     2304 CUDA Cores
  GPU Max Clock rate:                            1125 MHz (1.12 GHz)
  Memory Clock rate:                             5501 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 4194304 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Managed Memory:                Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA Runtime Version = 11.0, NumDevs = 1
Result = PASS

3)下載並安裝 cuDNN

從 NVIDIA 官方網址  https://developer.nvidia.com/rdp/cudnn-download 下載 cudnn-11.0-linux-x64-v8.0.5.39.tgz 。

解壓壓縮包,並把相應的文件,復制到指定目錄即可。如下所示:

tar zxvf cudnn-11.0-linux-x64-v8.0.5.39.tgz sudo cp cuda/include/cudnn* /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn* /usr/local/cuda/lib64/libcudnn*

方式三:CUDA 驅動和 CUDA Toolkit 都采用命令行方式安裝

首先,需要卸載原有的 NVIDIA 驅動並禁用自帶的驅動 nouveau;然后,重啟電腦,使用 lsmod | grep nouveau 命令檢查禁用自帶驅動是否成功;如果禁用成功,則安裝從 NVIDIA 官方地址下載的 CUDA  Toolkit。其步驟則與方式二相同,差別在於這次需要安裝 CUDA 驅動 。更多內容,參見 How to Install CUDA ToolKit 11.0, and Nvidia Display Driver on Ubuntu 20.04

問題與解答

問題 1,sudo apt update 時,出現有鎖無法更新的情況

$ sudo apt update Reading package lists... Done E: Could not get lock /var/lib/apt/lists/lock. It is held by process 1379 (packagekitd) N: Be aware that removing the lock file is not a solution and may break your system. E: Unable to lock directory /var/lib/apt/lists/

解決方法:

停用 packagekitd,並禁止開機啟動,具體命令如下:

systemctl stop packagekitd
systemcrl disable packagekit.service

參考資料 

[1] How to Install cuda on Ubuntu 20.04. https://linuxconfig.org/how-to-install-cuda-on-ubuntu-20-04-focal-fossa-linux

[2] Ubuntu16.04安裝NVIDIA驅動、實現GPU加速. https://blog.csdn.net/zhang970187013/article/details/81012845

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM