ubuntu20.04安裝/重裝 cuda11.4、cudnn


慎重安裝最新版的cuda吧,看看當前版本的pytorch和tensorflow支不支持最新的cuda,最好選個兩個都支持的cuda版本,安裝流程是一樣的

1.檢查自己電腦支持的cuda

lhw@lhw-Dell-G15-5511:~$ nvidia-smi
Wed Oct 20 00:00:21 2021       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.63.01    Driver Version: 470.63.01    CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:01:00.0  On |                  N/A |
| N/A   49C    P8    16W /  N/A |    633MiB /  5938MiB |     16%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A       988      G   /usr/lib/xorg/Xorg                 35MiB |
|    0   N/A  N/A      1586      G   /usr/lib/xorg/Xorg                345MiB |
|    0   N/A  N/A      1724      G   /usr/bin/gnome-shell               57MiB |
|    0   N/A  N/A    164717      G   ...AAAAAAAAA= --shared-files      144MiB |
|    0   N/A  N/A    164726      G   ...AAAAAAAAA= --shared-files       38MiB |
+-----------------------------------------------------------------------------+

顯示支持的cuda版本為11.4

查看顯卡算力地址 

 

2.去nvidia官網下載最新的cuda11.4.2

 

wget https://developer.download.nvidia.com/compute/cuda/11.4.2/local_installers/cuda_11.4.2_470.57.02_linux.run
sudo sh cuda_11.4.2_470.57.02_linux.run

出來提示后,依次操作(如果已經安裝了NVIDIA驅動就把第一項的x驅動安裝去掉

 1.是否接受EULA?   輸入accept
 2.cuda安裝?   選擇不安裝驅動,其他默認安裝install
 直至安裝完成

添加環境變量:

gedit ~/.bashrc
# 文本最后添加以下內容:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
# 保存退出,打開新終端激活
source ~/.bashrc

測試CUda

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make -j4
./deviceQuery

顯示結果:

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 1
Result = PASS

 

3.安裝cuDNN

官網注冊賬號登錄下載cuDNN

cuDNN Library for Linux (x86_64)

下載后解壓復制

tar zxvf cudnn-11.4-linux-x64-v8.2.4.15.tgz
sudo cp cuda/include/cudnn* /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn* /usr/local/cuda/lib64/libcudnn*

  

 

查詢版本號

cat cuda/include/cudnn_version.h |grep ^#

#ifndef CUDNN_VERSION_H_
#define CUDNN_VERSION_H_
#define CUDNN_MAJOR 8
#define CUDNN_MINOR 2
#define CUDNN_PATCHLEVEL 4
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#endif /* CUDNN_VERSION_H */

 

4. cuda 卸載

 sudo apt autoremove cuda

cd /usr/local/cuda/bin/
sudo ./cuda-uninstaller
# 選中所有cuda相關選項
sudo rm -rf /usr/local/cuda-11.0
sudo rm -rf /usr/local/cuda

5.  cudnn卸載

sudo rm -rf /usr/local/cuda/include/cudnn.h
sudo rm -rf /usr/local/cuda/lib64/libcudnn*

 

 

 

參考博客1

參考博客2

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM