Python中的sklearn--KFold與StratifiedKFold


KFold划分數據集的原理:根據n_split直接進行划分

StratifiedKFold划分數據集的原理:划分后的訓練集和驗證集中類別分布盡量和原數據集一樣

 

#導入相關packages

from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
 1 import numpy as np
 2 from sklearn.model_selection import StratifiedKFold
 3 X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
 4 y = np.array([0, 0, 1, 1])
 5 skf = StratifiedKFold(n_splits=2)
 6 skf.get_n_splits(X, y)
 7 >>>2
 8 print(skf)
 9 StratifiedKFold(n_splits=2, random_state=None, shuffle=False)
10 for train_index, test_index in skf.split(X, y):
11     print("TRAIN:", train_index, "TEST:", test_index)
12     X_train, X_test = X[train_index], X[test_index]    #返回數據框的方法 X_train = X.iloc[train_index]
13     y_train, y_test = y[train_index], y[test_index]
14 >>>TRAIN: [1 3] TEST: [0 2] #返回的是索引
15 >>>TRAIN: [0 2] TEST: [1 3]

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM