KFold划分数据集的原理:根据n_split直接进行划分
StratifiedKFold划分数据集的原理:划分后的训练集和验证集中类别分布尽量和原数据集一样
#导入相关packages from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold
1 import numpy as np 2 from sklearn.model_selection import StratifiedKFold 3 X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) 4 y = np.array([0, 0, 1, 1]) 5 skf = StratifiedKFold(n_splits=2) 6 skf.get_n_splits(X, y) 7 >>>2 8 print(skf) 9 StratifiedKFold(n_splits=2, random_state=None, shuffle=False) 10 for train_index, test_index in skf.split(X, y): 11 print("TRAIN:", train_index, "TEST:", test_index) 12 X_train, X_test = X[train_index], X[test_index] #返回数据框的方法 X_train = X.iloc[train_index] 13 y_train, y_test = y[train_index], y[test_index] 14 >>>TRAIN: [1 3] TEST: [0 2] #返回的是索引 15 >>>TRAIN: [0 2] TEST: [1 3]