Scala實現Flink消費kafka數據並用連接流過濾后存入PostgreSQL數據庫


1 前言

公司有一個項目整體的架構是要消費kafka數據並存入數據庫,以前選用的工具是spark streaming,最近flink已經變得比較流行了,所以也嘗試一下flink消費數據與spark streaming的區別。首先來簡單了解一下flink,它具有了流計算和批處理功能。它可以處理有界數據和無界數據,也就是可以處理永遠生產的數據。具體的細節我們不討論,我們直接搭建一個flink功能。總體的思路是source -> transform -> sink,即從source獲取相應的數據來源,然后進行數據轉換,將數據從比較亂的格式,轉換成我們需要的格式,轉換處理后,然后進行sink功能,也就是將數據寫入到相應的db里邊或文件中用於存儲和展現。

2 環境准備

JDK   1.8

Scala  2.11.8

Flink 1.10.1

3 代碼

  3.1 添加依賴

<dependencies>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.2.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb_2.11</artifactId>
            <version>1.10.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-filesystem_2.12</artifactId>
            <version>1.10.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.10.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.10.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.8</version>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-compiler</artifactId>
            <version>2.11.8</version>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-reflect</artifactId>
            <version>2.11.8</version>
        </dependency>
    </dependencies>

 3.2 程序入口

/**
 * flink 消費kafka數據  並將消費后的數據存入 PostgreSQL
 */

object FlinkTest {
  def main(args: Array[String]): Unit = {
    //創建表描述器
    val filterRules: MapStateDescriptor[String, String] = new  MapStateDescriptor("filter_rule", BasicTypeInfo.STRING_TYPE_INFO, Types.STRING)
    
    // 讀取命令行參數
    val fromArgs = ParameterTool.fromArgs(args)
    // 讀取配置文件
    val parameterTool = ParameterTool.fromPropertiesFile(fromArgs.get("properties"))
    //checkpoint配置
    val checkpointDirectory = parameterTool.getRequired("checkpointDirectory.test")
    val checkpointSecondInterval = parameterTool.getLong("checkpointSecondInterval")

    // kafka設置
    val kafkaBootStrapServers = parameterTool.getRequired("kafka.bootstrap.servers.test")
    val kafkaGroupID = parameterTool.getRequired("kafka.group.id.test")
    val kafkaSourceTopic = parameterTool.getRequired("kafka.topic.test")

    // Postgresql 配置
    val postgresqlHost = parameterTool.getRequired("postgresql.host")
    val postgresqlPort = parameterTool.getInt("postgresql.port")
    val postgresqlDB = parameterTool.getRequired("postgresql.db")
    val postgresqlUser = parameterTool.getRequired("postgresql.user")
    val postgresqlPassword = parameterTool.getRequired("postgresql.password")
    val postgresqlInterval = parameterTool.getInt("postgre.secondInterval")
    val env = StreamExecutionEnvironment.getExecutionEnvironment


    // 開啟Checkpoint ,每10000毫秒進行依次 checkoint
    //env.enableCheckpointing(10000);
    env.enableCheckpointing(60000)
    // Checkpoint 語義設置為 Exactly_ONCE
    env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
    // Checkpoint 的超時時間
    env.getCheckpointConfig.setCheckpointTimeout(120000)
    // 同時只允許一個Checkpoint在發生
    env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
    // 兩次Checkpoint之間的最小時間間隔為 checkpointSecondInterval * 1000  ms
    env.getCheckpointConfig.setMinPauseBetweenCheckpoints(checkpointSecondInterval * 1000)
    // 當FLink任務取消時保留外部保存的Checkpoint信息
    env.getCheckpointConfig.enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
    // 作業最多允許Checkpoint失敗10次
    env.getCheckpointConfig.setTolerableCheckpointFailureNumber(10)
    // 設置狀態后端
    val backend = new RocksDBStateBackend(checkpointDirectory, true)
    env.setStateBackend(backend.asInstanceOf[StateBackend])

    /*
        kafka配置
         */
    val kafkaSourceProps = new Properties()
    kafkaSourceProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaBootStrapServers)
    kafkaSourceProps.put(ConsumerConfig.GROUP_ID_CONFIG, kafkaGroupID)

    //增加kafkasource  數據源   kafka的消費者
    val kafkaSource = env.addSource(new FlinkKafkaConsumer(kafkaSourceTopic, new SimpleStringSchema, kafkaSourceProps))
      .uid("kafkaSource").name("kafkaSource").setParallelism(3)


    import scala.collection.mutable.Map
    //提取數據,並解析
    val alarmEventStream = kafkaSource.process(new ProcessFunction[String, Map[String,String]] {
      override def processElement(value: String, ctx: ProcessFunction[String, Map[String, String]]#Context, out: Collector[Map[String, String]]): Unit = {
        if(value.contains("業務所需信息")){
          val arrs = value.split("\n")
          var map:Map[String,String] = Map()
          var key = ""
          for(a <- arrs){
            key = a.split(":")(0)
            map.put(key,a.split(key+":")(1))
          }
          out.collect(map)
        }
      }
    }).uid("test").name("test").setParallelism(2)


    // 自定義PostgreSQL Source,周期性地從PostgreSQL中獲取過濾數據,並廣播出去
    val pgsource = new PostgreSQLSource(postgresqlHost, postgresqlPort, postgresqlDB, postgresqlUser, postgresqlPassword, postgresqlInterval)
    val configStream: SingleOutputStreamOperator[ListBuffer[String]] = env.addSource(pgsource)
      .uid("DataListFromPostgreSQL")
      .name("DataListFromPostgreSQL").setParallelism(3)

    // 將過濾流廣播,形成BroadcastStream
    val  filterRulesStream: BroadcastStream[ListBuffer[String]] = configStream.broadcast(filterRules)
    //實時流和過濾流連接
    val connectedStream: BroadcastConnectedStream[Map[String, String], ListBuffer[String]] =alarmEventStream.connect(filterRulesStream)

    val filter = new FilterSpecificProblemIDProcessFunction()

    val filterStream: SingleOutputStreamOperator[Map[String,String]] = connectedStream.process(filter)

    // 將過濾后的數據寫入 PostgreSQL
    filterStream.addSink(
      new ESBPostgreSQLSink
      (postgresqlHost, postgresqlPort, postgresqlDB, postgresqlUser, postgresqlPassword))
      .uid("PostgresSQLSink")
      .name("PostgresSQLSink")
      .setParallelism(1)

    //執行任務
    env.execute("test")


  }

}

 3.3 自定義source

在提取pg數據庫過濾數據的時候,由於flink沒有實現pg數據庫的source,所以需要我們自己定義一個source

class PostgreSQLSource(host:String,port:Int,db:String,username:String,pass:String,secondInterval:Int) extends RichSourceFunction[ListBuffer[String]]{


  private var connection: Connection = null
  private var ps: PreparedStatement = null
  //表示數據源是否運行正常
  var running: Boolean = true





  override def open(parameters: Configuration): Unit = {
    super.open(parameters)
    Class.forName("org.postgresql.Driver")
    connection = DriverManager.getConnection("jdbc:postgresql://" + host + ":" + port + "/" + db, username, pass)
    val sql = "select testData from testTable"
    ps = connection.prepareStatement(sql)

  }

  override def close(): Unit = {
    if (connection!=null){
      connection.close()
    }
    if (ps !=null){
      ps.close()
    }
  }



  override def cancel(): Unit = {
    running = false
  }

  override def run(ctx: SourceFunction.SourceContext[ListBuffer[String]]): Unit = {
    try {
      while (running) {
        var listBuffer: ListBuffer[String] = ListBuffer()
        var res: ResultSet = ps.executeQuery;
        while (res.next()) {
          val testData = res.getString("testData");
          listBuffer += testData
        }
        ctx.collect(listBuffer)
      }
    }catch {
      case e : Exception=>{
        println("出現異常")
      }
    }

  }
}

3.4 自定義BroadcastProcessFunction

在處理實時流和過濾流連接后的連接流時,需要我們傳入一個BroadcastProcessFunction,這里面我們自定義一個類繼承BroadcastProcessFunction,然后再完成我們的業務邏輯

class FilterSpecificProblemIDProcessFunction extends BroadcastProcessFunction[Map[String,String],ListBuffer[String],Map[String,String]]{

  /**
   * 定義MapStateDescriptor   狀態描述符
   */

  val filterRules: MapStateDescriptor[String, String] = new  MapStateDescriptor("filter_rule", BasicTypeInfo.STRING_TYPE_INFO, Types.STRING)




  override def processElement(value: Map[String, String], readOnlyContext: BroadcastProcessFunction[Map[String, String], ListBuffer[String], Map[String, String]]#ReadOnlyContext, collector: Collector[Map[String,String]]): Unit = {
    //實時流id
    val id:String = value.getOrElse("id","NIL")
    //獲取連接狀態
    val broadcastState: ReadOnlyBroadcastState[String, String] = readOnlyContext.getBroadcastState(filterRules)
    if (broadcastState.contains(id)){
        collector.collect(value)
    }
  }

  override def processBroadcastElement(value: ListBuffer[String], context: BroadcastProcessFunction[Map[String, String], ListBuffer[String],  Map[String, String]]#Context, collector: Collector[ Map[String, String]]): Unit = {
    if (value.size == 0 || value == null){
      return
    }
    val broadcastState: BroadcastState[String, String]= context.getBroadcastState(filterRules)

    //清空狀態
    broadcastState.clear()

    //更新狀態
    for (i <- 0 until value.size) {
      broadcastState.put(value.apply(i), value.apply(i))
    }
  }
}

 3.5 自定義sink

同理,在將數據存入pg數據庫的時候,由於flink沒有實現pg數據庫的sink,所以需要我們自己定義一個sink

class ESBPostgreSQLSink(postgresqlHost: String, postgresqlPort: Int, postgresqlDB: String, postgresqlUser: String, postgresqlPassword: String) extends RichSinkFunction[Map[String,String]] {

  private var connection:Connection = null
  private var psInsert: PreparedStatement = null
  private var psUpdate: PreparedStatement = null
  private var psInsertUpdate: PreparedStatement = null

  override def open(parameters: Configuration): Unit = {
    super.open(parameters)
    Class.forName("org.postgresql.Driver")
    connection = DriverManager.getConnection("jdbc:postgresql://" + postgresqlHost + ":" + postgresqlPort + "/" + postgresqlDB, postgresqlUser, postgresqlPassword)
    val insert = "新增"
    val update ="更新"
    val insertUpdate = "存在則更新,不存在則新增"
    psInsert = this.connection.prepareStatement(insert)
    psUpdate = this.connection.prepareStatement(update)
    psInsertUpdate = this.connection.prepareStatement(insertUpdate)
  }

  override def close(): Unit = {
    super.close()
    //關閉連接和釋放資源
    if (connection != null) connection.close()
    if (psInsert != null) psInsert.close()
    if (psUpdate != null) psUpdate.close()
  }

  override def invoke(value: Map[String, String], context: SinkFunction.Context[_]): Unit = {
    //此處就是具體插入數據庫的業務邏輯
      }
    }
  }
}

注意事項

1 Flink每次做Checkpoint的時候,會Flush緩沖區的數據,以及將Pending(已經完成的文件,但為被Checkpoint記錄,可以通過sink.setPendingSuffix("xxx")來設置)結尾的文件記錄下來

2 Flink每60秒(可以通過sink.setInactiveBucketCheckInterval(60 * 1000)來進行設置)檢測,如果一個文件的FSDataOutputStream在60秒內(可以通過sink.setInactiveBucketThreshold(60 * 1000)來設置),都還沒有接收到數據,Flink就會認為該文件是不活躍的Bucket,那么就會被Flush后關閉該文件;

3 在Flink內部封裝了一個集合Map<String, BucketState<T>> bucketStates = new HashMap<>();用來記錄當前正在使用的文件,key是文件的路徑,BucketState內部封裝了該文件的所有信息,包括創建時間,最后一次寫入時間(這里的寫入指的是寫入緩存區的時間,不是Flush的時間)。當前文件是打開還是關閉,寫緩沖區的方法。都在這里。每次Flink要對文件進行操作的時候,都會從這里拿到文件的封裝對象;

4 在代碼里設置合理並行度是一個需要長久觀察和調試的過程!!可能也是我后面需要更加深入學習flink的地方!!並行度並不是設置的越高越好,太高會浪費資源,並且效率也不會提升太多,太少則會造成執行效率低下!主要還是要根據具體的業務邏輯取設置比較合理

總結

總體來說,相對於spark streaming,flink的代碼略顯復雜!畢竟也是處在一個上升的階段,各方面還是有待完善的地方!但是,對於業務有很高的實時性要求的,flink絕對是一個不錯的選擇,處理速度是非常快的!這篇博客就和大家分享到這里,如果大家在研究學習的過程當中有什么問題,可以發送郵件給我,我會盡我所能為您解答,與君共勉!

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM