guava eventbus 原理+源碼分析


前言:

guava提供的eventbus可以很方便的處理一對多的事件問題, 最近正好使用到了,做個小結,使用的demo網上已經很多了,不再贅述,本文主要是源碼分析+使用注意點+新老版本eventbus實現方式對比

一.原理

 

 

將定義的hander注冊到eventbus中,eventbus遍歷該handler及其父類中含有@subscribe注解的方法,封裝成subscriber對象,一個event會對應多個方法,Map<EventType.class,List<Subscriber>>,但既然是guava出品,這種情況下一定會用自己家的MultiMap了,接收到event后根據類型匹配對應的subscriber去執行,接下來從源碼角度探究下

 二.源碼分析

主要分析注冊與分發處理,會貼相關的源碼的注釋(guava版本github 2021 1月版本),方便你閱讀

1.注冊流程

分析之前我們先簡要拓展下關於guava cache的用法,compute if absent,不存在則計算,對應getOrLoad方法(暴露給用戶的是get()),有則直接返回,

注冊流程抓住一個關鍵點即可,即一個subscriber對應一個被@subscriber標記的method,為了方便閱讀,我把代碼貼到一起

 1   /** Registers all subscriber methods on the given listener object. */
 2   void register(Object listener) {  3     // key-eventType.class value-List<Subscriber>,一個subscriber對應一個方法
 4     Multimap<Class<?>, Subscriber> listenerMethods = findAllSubscribers(listener);  5 
 6     for (Entry<Class<?>, Collection<Subscriber>> entry : listenerMethods.asMap().entrySet()) {  7       Class<?> eventType = entry.getKey();  8       Collection<Subscriber> eventMethodsInListener = entry.getValue();  9       // 並發讀寫
 10       CopyOnWriteArraySet<Subscriber> eventSubscribers = subscribers.get(eventType);  11 
 12       if (eventSubscribers == null) {  13         CopyOnWriteArraySet<Subscriber> newSet = new CopyOnWriteArraySet<>();  14         // eventType.class不存在時才put,concurrenthashmap的putIfAbsent()  15         // 有可能為null,用newSet替換
 16         eventSubscribers =
 17  MoreObjects.firstNonNull(subscribers.putIfAbsent(eventType, newSet), newSet);  18  }  19       // 添加
 20  eventSubscribers.addAll(eventMethodsInListener);  21  }  22  }  23   
 24   
 25   /**
 26  * Returns all subscribers for the given listener grouped by the type of event they subscribe to.  27    */
 28   private Multimap<Class<?>, Subscriber> findAllSubscribers(Object listener) {  29     Multimap<Class<?>, Subscriber> methodsInListener = HashMultimap.create();  30     Class<?> clazz = listener.getClass();  31     for (Method method : getAnnotatedMethods(clazz)) {  32       Class<?>[] parameterTypes = method.getParameterTypes();  33       Class<?> eventType = parameterTypes[0];  34       // 創建subscriber時,如果未添加@AllowConcurrentEvents注解則生成同步的subscriber
 35  methodsInListener.put(eventType, Subscriber.create(bus, listener, method));  36  }  37     return methodsInListener;  38  }  39 
 40   private static ImmutableList<Method> getAnnotatedMethods(Class<?> clazz) {  41     try {  42       return subscriberMethodsCache.getUnchecked(clazz);  43     } catch (UncheckedExecutionException e) {  44  throwIfUnchecked(e.getCause());  45       throw e;  46  }  47  }  48 
 49 // 映射關系緩存,getOrload
 50   private static final LoadingCache<Class<?>, ImmutableList<Method>> subscriberMethodsCache =
 51  CacheBuilder.newBuilder()  52  .weakKeys()  53  .build(  54               new CacheLoader<Class<?>, ImmutableList<Method>>() {  55  @Override  56                 public ImmutableList<Method> load(Class<?> concreteClass) throws Exception {  57                   return getAnnotatedMethodsNotCached(concreteClass);  58  }  59  });  60 
 61 private static ImmutableList<Method> getAnnotatedMethodsNotCached(Class<?> clazz) {  62     // 獲得listener的所有父類及自身的class(包括接口)
 63     Set<? extends Class<?>> supertypes = TypeToken.of(clazz).getTypes().rawTypes();  64     Map<MethodIdentifier, Method> identifiers = Maps.newHashMap();  65     for (Class<?> supertype : supertypes) {  66       for (Method method : supertype.getDeclaredMethods()) {  67         if (method.isAnnotationPresent(Subscribe.class) && !method.isSynthetic()) {  68           // TODO(cgdecker): Should check for a generic parameter type and error out
 69           Class<?>[] parameterTypes = method.getParameterTypes();  70           // 參數校驗,@subscribe注解的方法有且有能有一個非原始類型參數
 71  checkArgument(  72               parameterTypes.length == 1,  73               "Method %s has @Subscribe annotation but has %s parameters. "
 74                   + "Subscriber methods must have exactly 1 parameter.",  75  method,  76  parameterTypes.length);  77 
 78  checkArgument(  79               !parameterTypes[0].isPrimitive(),  80               "@Subscribe method %s's parameter is %s. "
 81                   + "Subscriber methods cannot accept primitives. "
 82                   + "Consider changing the parameter to %s.",  83  method,  84               parameterTypes[0].getName(),  85               Primitives.wrap(parameterTypes[0]).getSimpleName());  86 
 87           MethodIdentifier ident = new MethodIdentifier(method);  88           // 重寫的方法只放入一次
 89           if (!identifiers.containsKey(ident)) {  90  identifiers.put(ident, method);  91  }  92  }  93  }  94  }  95     return ImmutableList.copyOf(identifiers.values());  96  }  97 
 98 
 99   // 創建subscriber
100   static Subscriber create(EventBus bus, Object listener, Method method) { 101     return isDeclaredThreadSafe(method) 102         ? new Subscriber(bus, listener, method) 103         : new SynchronizedSubscriber(bus, listener, method); 104  } 105 
106  @VisibleForTesting 107   static final class SynchronizedSubscriber extends Subscriber { 108 
109     private SynchronizedSubscriber(EventBus bus, Object target, Method method) { 110       super(bus, target, method); 111  } 112 
113  @Override 114     void invokeSubscriberMethod(Object event) throws InvocationTargetException { 115       synchronized (this) { 116         super.invokeSubscriberMethod(event); 117  } 118  } 119   }

值得注意的是subscriber的生成,即便你使用了AsyncEventbus,卻沒有在處理方法上聲明@AllowConcurrentEvents,那么在處理event時仍然是同步執行的,注冊流程並發安全問題請看第三部分

2.分發流程

先看下如何獲得event對應的subscriber

 1 public void post(Object event) {  2     Iterator<Subscriber> eventSubscribers = subscribers.getSubscribers(event);  3     if (eventSubscribers.hasNext()) {  4       // 分發,dispatcher有三種實現,ImmediateDispatcher(同步處理event,深度優先)  5       // LegacyAsyncDispatcher(異步處理event)  6       // PerThreadQueuedDispatcher(默認,同步調用,廣度優先) 內置隊列,可以保證同一線程內的event的順序
 7  dispatcher.dispatch(event, eventSubscribers);  8     } else if (!(event instanceof DeadEvent)) {  9       // the event had no subscribers and was not itself a DeadEvent 10       // 把所有沒有被訂閱的event包裝成deadevent,用戶可以自己定義處理deadevent的方法,作為兜底
11       post(new DeadEvent(this, event)); 12  } 13  } 14 
15   Iterator<Subscriber> getSubscribers(Object event) { 16     //獲得event的所有父類及自身的class(包括接口),從獲取subscriber的流程來看,post一個event 17     // 時,除了調用該event的處理方法也會調用該event父類的處理方法
18     ImmutableSet<Class<?>> eventTypes = flattenHierarchy(event.getClass()); 19 
20     List<Iterator<Subscriber>> subscriberIterators =
21  Lists.newArrayListWithCapacity(eventTypes.size()); 22 
23     for (Class<?> eventType : eventTypes) { 24       CopyOnWriteArraySet<Subscriber> eventSubscribers = subscribers.get(eventType); 25       if (eventSubscribers != null) { 26         // eager no-copy snapshot
27  subscriberIterators.add(eventSubscribers.iterator()); 28  } 29  } 30     // 類似flatmap,扁平化
31     return Iterators.concat(subscriberIterators.iterator()); 32  } 33 
34  @VisibleForTesting 35   static ImmutableSet<Class<?>> flattenHierarchy(Class<?> concreteClass) { 36     try { 37       return flattenHierarchyCache.getUnchecked(concreteClass); 38     } catch (UncheckedExecutionException e) { 39       throw Throwables.propagate(e.getCause()); 40  } 41  } 42 
43   private static final LoadingCache<Class<?>, ImmutableSet<Class<?>>> flattenHierarchyCache =
44  CacheBuilder.newBuilder() 45  .weakKeys() 46  .build( 47               new CacheLoader<Class<?>, ImmutableSet<Class<?>>>() { 48                 // <Class<?>> is actually needed to compile
49                 @SuppressWarnings("RedundantTypeArguments") 50  @Override 51                 public ImmutableSet<Class<?>> load(Class<?> concreteClass) { 52                   return ImmutableSet.<Class<?>>copyOf( 53  TypeToken.of(concreteClass).getTypes().rawTypes()); 54  } 55               });

從代碼可以看出,先對該event查詢上級,最后把所有event對應的subscriber返回,因此觸發一個event時,其父event的subscriber也會被調用

接下來看下post,流程eventbus有三種dispatcher(ImmediaDispatcher,PerThreadDispatcher,LegacyAsyncDispatcher)eventbus使用的是PerThreadDispatcher,AsyncEventBus使用LegacyAsyncDispatcher

①ImmediaDispatcher

從名字中的Immedia"即時"就能看出這個dispatcher收到event后會立即處理,不會進行異步處理

代碼如下:

 從圖中可以看出ImmediaDispatcher是針對每個event,調用其全部的subscriber進行處理,即盡可能多的調用subscriber,所以是廣度優先,這個dispatcher目前未被使用,了解即可

 ②PerThreadQueueDispatcher(默認的dispatcher)

同樣從名稱可以看出這種dispatcher是一個thread一個queue,那我們可以猜測內部有可能用了ThreadLocal,既然用了隊列,說明想要起到一個緩沖event處理的過程

隊列的緩沖功能使得dispatcher有能力吞吐更高的event,因此是一種深度優先策略,此外每線程每隊列的方式保證了event處理過程是對於每個線程而言是有序的,同樣是廣度優先,對

每一個event都分發到相關的subscriber進行處理,除此之外還有一個值得稱道的點,即Dispatching變量的使用,規避了遞歸產生的死循環問題

 1 private static final class PerThreadQueuedDispatcher extends Dispatcher {  2 
 3     // This dispatcher matches the original dispatch behavior of EventBus.
 4 
 5     /** Per-thread queue of events to dispatch. */
 6     private final ThreadLocal<Queue<Event>> queue =
 7         new ThreadLocal<Queue<Event>>() {  8  @Override  9           protected Queue<Event> initialValue() { 10             return Queues.newArrayDeque(); 11  } 12  }; 13 
14     /** Per-thread dispatch state, used to avoid reentrant event dispatching. */
15     private final ThreadLocal<Boolean> dispatching =
16         new ThreadLocal<Boolean>() { 17  @Override 18           protected Boolean initialValue() { 19             return false; 20  } 21  }; 22 
23  @Override 24     void dispatch(Object event, Iterator<Subscriber> subscribers) { 25  checkNotNull(event); 26  checkNotNull(subscribers); 27       // 如果只從代碼來看,PerThreadQueuedDispatcher的dispatch方法始終 28       // 是單線程調用,並不需要ThreadLocal,但從拓展的角度看,當用戶自定義xxeventbus自己實現分發邏輯時,PerThreadQueuedDispatcher實現了線程安全的dispatch 29       //因為eventbus有可能會被多個線程調用,從框架的角度看,無論用戶是否多線程調用,都應該要保證線程安全 30       // 引用issue 3530中 https://github.com/google/guava/issues/3530 的一個回答 if multiple threads are dispatching to this dispatcher, they will read different values for queueForThread and dispatching.
31       Queue<Event> queueForThread = queue.get(); 32       queueForThread.offer(new Event(event, subscribers)); 33 
34       // 如果未開始分發事件則進行處理,解決subscriber遞歸調用post產生的死循環
35       if (!dispatching.get()) { 36         dispatching.set(true); 37         try { 38  Event nextEvent; 39           // 對每一個event,分發到相關的subscribers中
40           while ((nextEvent = queueForThread.poll()) != null) { 41             while (nextEvent.subscribers.hasNext()) { 42  nextEvent.subscribers.next().dispatchEvent(nextEvent.event); 43  } 44  } 45         } finally { 46  dispatching.remove(); 47  queue.remove(); 48  } 49  } 50     }

接下來看下剛剛說的dispatching的妙用demo

在guava-test下建立一個新的目錄方便我們修改源碼后進行測試,測試代碼如下

Listener

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2020-11-23  5  */
 6 public class Listener {  7 
 8     private final EventBus eventBus;  9 
10     public Listener(EventBus eventBus) { 11         this.eventBus = eventBus; 12  } 13 
14  @Subscribe 15     public void record(String s) { 16  eventBus.post(s); 17         System.out.println("receive:"+ s); 18  } 19 }

Producer

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2020-11-23  5  */
 6 public class Producer {  7 
 8     public String produce() {  9         return "hello"; 10  } 11 }

Main

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2020-11-23  5  */
 6 public class Main {  7 
 8     public static void main(String[] args) {  9         EventBus eventBus = new EventBus(); 10         Listener listener = new Listener(eventBus); 11         Producer producer = new Producer(); 12  eventBus.register(listener); 13         String produce = producer.produce(); 14  eventBus.post(produce); 15  } 16 
17 }

代碼很簡單,問題在於Listener遞歸調用了post方法,按照代碼示意運行后會棧溢出(隊列中event堆積),receive:hello永遠不會打印,可事實真的如此嗎?

 很奇怪是嗎,並沒有產生堆棧溢出的問題,反而是不停的輸出receive:hello,接下來我們修改下PerThreadDispatcher的代碼,將dispatching變量注釋掉

  

再執行下demo

 果然溢出了,關鍵點就在於dispatching變量對於同一線程的遞歸分發進行了處理,已經處理過就不再次進行分發,這樣我們的遞歸調用不停的產生的event得以被處理

 ③LegacyAsyncDispatcher

看名字挺奇怪的,但有async字樣,所以是異步的dispatcher,LegacyAsyncDispacther是AsyncEventBus的專用dispatcher,由於將event對應的subscriber拆分后入隊,多線程情況下無法保證event入隊順序,也就無法保證subscriber的調用順序,但這樣處理實現了深度優先,即盡可能多的調用不同的event的subscriber,與PerThreadDispatcher相比代碼難度小了不少,由於AsyncEventBus的初始化需要傳入線程池參數,所以AsyncEventBus實現了真正的異步處理

 1 /** Implementation of a {@link #legacyAsync()} dispatcher. */
 2   private static final class LegacyAsyncDispatcher extends Dispatcher {  3 
 4     // This dispatcher matches the original dispatch behavior of AsyncEventBus.  5     //
 6     // We can't really make any guarantees about the overall dispatch order for this dispatcher in  7     // a multithreaded environment for a couple reasons:  8     //
 9     // 1. Subscribers to events posted on different threads can be interleaved with each other 10     // freely. (A event on one thread, B event on another could yield any of 11     // [a1, a2, a3, b1, b2], [a1, b2, a2, a3, b2], [a1, b2, b3, a2, a3], etc.) 12     // 2. It's possible for subscribers to actually be dispatched to in a different order than they 13     // were added to the queue. It's easily possible for one thread to take the head of the 14     // queue, immediately followed by another thread taking the next element in the queue. That 15     // second thread can then dispatch to the subscriber it took before the first thread does. 16     //
17     // All this makes me really wonder if there's any value in queueing here at all. A dispatcher 18     // that simply loops through the subscribers and dispatches the event to each would actually 19     // probably provide a stronger order guarantee, though that order would obviously be different 20     // in some cases.
21 
22     /** Global event queue. */
23     private final ConcurrentLinkedQueue<EventWithSubscriber> queue =
24  Queues.newConcurrentLinkedQueue(); 25 
26  @Override 27     void dispatch(Object event, Iterator<Subscriber> subscribers) { 28  checkNotNull(event); 29       // 拆分后入隊
30       while (subscribers.hasNext()) { 31         queue.add(new EventWithSubscriber(event, subscribers.next())); 32  } 33 
34  EventWithSubscriber e; 35       while ((e = queue.poll()) != null) { 36  e.subscriber.dispatchEvent(e.event); 37  } 38  } 39 
40     private static final class EventWithSubscriber { 41       private final Object event; 42       private final Subscriber subscriber; 43 
44       private EventWithSubscriber(Object event, Subscriber subscriber) { 45         this.event = event; 46         this.subscriber = subscriber; 47  } 48  } 49   }

注意點:

1.eventbus默認使用的線程池MoreExecutors.directExecutor(),其execute方法是直接調用傳入的runnable的run方法,是非異步的 

2.使用AsyncEventBus時,請在對應的方法上添加@AllowConcurrenEvents

三.從並發安全的角度出發,對比下新老版本的注冊流程

本部分為補充內容,重點探討新老版本的注冊並發安全問題,可略過

從20.0開始,event bus的注冊程變成了上面分析的,那么之前的版本是如何實現的呢,一起來分析下.先切到16.0 的tag,注冊代碼如下

顯然是使用了讀寫鎖,不加鎖,eventType會相互覆蓋(HashMultiMap是非線程安全的),先給eventbus加個getSubscriberByType(),記得修改下EventSubscriber的修飾符為public,然后做個多線程的測試

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2021-01-24  5  */
 6 public class ListenerA {  7 
 8  @Subscribe  9     public void handle(String msg) { 10         System.out.println("ListenerA:" + msg); 11  } 12 
13 } 14 
15 /**
16  * @author tele 17  * @Description 18  * @create 2021-01-24 19  */
20 public class ListenerB { 21 
22  @Subscribe 23     public void handle(String msg) { 24         System.out.println("ListenerB:" + msg); 25  } 26 
27 } 28 
29 /**
30  * @author tele 31  * @Description 32  * @create 2021-01-24 33  */
34 public class Main { 35 
36 
37     public static void main(String[] args) throws InterruptedException { 38 
39         final EventBus eventBus = new EventBus(); 40         final ListenerA a = new ListenerA(); 41         ListenerB b = new ListenerB(); 42         CountDownLatch countDownLatch = new CountDownLatch(6); 43 
44         Runnable r1 = ()-> { 45  eventBus.register(a); 46  countDownLatch.countDown(); 47  }; 48         Thread t1 = new Thread(r1); 49         Thread t2 = new Thread(r1); 50         Thread t3 = new Thread(r1); 51 
52         Runnable r2 = ()-> { 53  eventBus.register(b); 54  countDownLatch.countDown(); 55  }; 56         Thread t4 = new Thread(r2); 57         Thread t5 = new Thread(r2); 58         Thread t6 = new Thread(r2); 59 
60  t1.start(); 61  t2.start(); 62  t3.start(); 63  t4.start(); 64  t5.start(); 65  t6.start(); 66  countDownLatch.await(); 67         SetMultimap<Class<?>, EventSubscriber> subscribersByType = eventBus.getSubscribersByType(); 68         subscribersByType.asMap().forEach((k,v)-> { 69             System.out.println("key:" + k); 70  v.forEach(System.out::println); 71  }); 72  } 73 }

輸出結果如下:

 ok,沒啥問題,接下來再修改下源碼把使用讀寫鎖的兩行代碼注釋掉,再執行下代碼

 

 輸出結果如下:

顯然,ListenerA的注冊結果被覆蓋了,這里簡要說下原因,subscribersByType,k-v結構簡略表示為 K-event.class ,value-Set<Listener.class>,我們知道java中的hashset不重復的特性是基於hashmap實現的.同樣的,這里的SetMultiMap實際是用的HashMultiMap,翻翻源碼就知道了,內部存儲數據的容器是hashmap,那么這個問題就轉換成了hashmap的線程安全問題了,hashmap多線程put hash相同的元素會產生丟失問題,多線程下同時put get有可能導致get 出null.了解到這我們就知道為什么要加鎖了,使用讀寫鎖的版本一直持續到19.0,從20.0開始從開始使用並發容器代替讀寫鎖,因為對於eventbus而言始終是讀遠大於寫,基於cow機制實現的CopyOnWriteArrayList在讀寫同時進行時通過延遲更新的策略不阻塞線程,對於event的處理 而言是可以接受的,因為本次event在post時沒有分發到對應的subsriber,下次同類型的event觸發就ok了,事實上,這種場景極少,因為從使用經歷來看,一般是項目啟動時就注冊,分發都是需要處理邏輯時才會觸發,不阻塞與每次都需要加解讀鎖相比,顯然不阻塞的性能更好了.老版本的分發流程不再贅述,因為確實沒啥好分析的了,如果你能看懂上面分析的新版本的dispatcher,當你看老版本的時候就會感覺很簡單了

四.優勢與缺陷

1.進程內使用,無法實現跨進程處理,需要跨進程傳遞消息,還是老老實實的用消息隊列吧

2.和redis一樣基於內存,天然的不可靠,redis好歹還有aof和rdb,可event bus沒有任何持久化機制

3.個人對新版的Subscriber實現方式有點看法,沒必須要把線程池參數傳遞給Subscriber,因為Subscriber只是被執行者,16.0的版本線程池參數是AsyncEventBus持有

4.優勢:簡單,開箱即用

五.小結

1.只分析了注冊與分發流程,異常處理之類的沒有涉及,用法的話,網上已經很多了,不再贅述

2.event bus的代碼很巧妙,細細品味還有很多巧妙之處,比如上面那個dispatching變量

六.參考文檔

1.github https://github.com/google/guava/wiki/EventBusExplained#for-producers

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM