guava eventbus 原理+源码分析


前言:

guava提供的eventbus可以很方便的处理一对多的事件问题, 最近正好使用到了,做个小结,使用的demo网上已经很多了,不再赘述,本文主要是源码分析+使用注意点+新老版本eventbus实现方式对比

一.原理

 

 

将定义的hander注册到eventbus中,eventbus遍历该handler及其父类中含有@subscribe注解的方法,封装成subscriber对象,一个event会对应多个方法,Map<EventType.class,List<Subscriber>>,但既然是guava出品,这种情况下一定会用自己家的MultiMap了,接收到event后根据类型匹配对应的subscriber去执行,接下来从源码角度探究下

 二.源码分析

主要分析注册与分发处理,会贴相关的源码的注释(guava版本github 2021 1月版本),方便你阅读

1.注册流程

分析之前我们先简要拓展下关于guava cache的用法,compute if absent,不存在则计算,对应getOrLoad方法(暴露给用户的是get()),有则直接返回,

注册流程抓住一个关键点即可,即一个subscriber对应一个被@subscriber标记的method,为了方便阅读,我把代码贴到一起

 1   /** Registers all subscriber methods on the given listener object. */
 2   void register(Object listener) {  3     // key-eventType.class value-List<Subscriber>,一个subscriber对应一个方法
 4     Multimap<Class<?>, Subscriber> listenerMethods = findAllSubscribers(listener);  5 
 6     for (Entry<Class<?>, Collection<Subscriber>> entry : listenerMethods.asMap().entrySet()) {  7       Class<?> eventType = entry.getKey();  8       Collection<Subscriber> eventMethodsInListener = entry.getValue();  9       // 并发读写
 10       CopyOnWriteArraySet<Subscriber> eventSubscribers = subscribers.get(eventType);  11 
 12       if (eventSubscribers == null) {  13         CopyOnWriteArraySet<Subscriber> newSet = new CopyOnWriteArraySet<>();  14         // eventType.class不存在时才put,concurrenthashmap的putIfAbsent()  15         // 有可能为null,用newSet替换
 16         eventSubscribers =
 17  MoreObjects.firstNonNull(subscribers.putIfAbsent(eventType, newSet), newSet);  18  }  19       // 添加
 20  eventSubscribers.addAll(eventMethodsInListener);  21  }  22  }  23   
 24   
 25   /**
 26  * Returns all subscribers for the given listener grouped by the type of event they subscribe to.  27    */
 28   private Multimap<Class<?>, Subscriber> findAllSubscribers(Object listener) {  29     Multimap<Class<?>, Subscriber> methodsInListener = HashMultimap.create();  30     Class<?> clazz = listener.getClass();  31     for (Method method : getAnnotatedMethods(clazz)) {  32       Class<?>[] parameterTypes = method.getParameterTypes();  33       Class<?> eventType = parameterTypes[0];  34       // 创建subscriber时,如果未添加@AllowConcurrentEvents注解则生成同步的subscriber
 35  methodsInListener.put(eventType, Subscriber.create(bus, listener, method));  36  }  37     return methodsInListener;  38  }  39 
 40   private static ImmutableList<Method> getAnnotatedMethods(Class<?> clazz) {  41     try {  42       return subscriberMethodsCache.getUnchecked(clazz);  43     } catch (UncheckedExecutionException e) {  44  throwIfUnchecked(e.getCause());  45       throw e;  46  }  47  }  48 
 49 // 映射关系缓存,getOrload
 50   private static final LoadingCache<Class<?>, ImmutableList<Method>> subscriberMethodsCache =
 51  CacheBuilder.newBuilder()  52  .weakKeys()  53  .build(  54               new CacheLoader<Class<?>, ImmutableList<Method>>() {  55  @Override  56                 public ImmutableList<Method> load(Class<?> concreteClass) throws Exception {  57                   return getAnnotatedMethodsNotCached(concreteClass);  58  }  59  });  60 
 61 private static ImmutableList<Method> getAnnotatedMethodsNotCached(Class<?> clazz) {  62     // 获得listener的所有父类及自身的class(包括接口)
 63     Set<? extends Class<?>> supertypes = TypeToken.of(clazz).getTypes().rawTypes();  64     Map<MethodIdentifier, Method> identifiers = Maps.newHashMap();  65     for (Class<?> supertype : supertypes) {  66       for (Method method : supertype.getDeclaredMethods()) {  67         if (method.isAnnotationPresent(Subscribe.class) && !method.isSynthetic()) {  68           // TODO(cgdecker): Should check for a generic parameter type and error out
 69           Class<?>[] parameterTypes = method.getParameterTypes();  70           // 参数校验,@subscribe注解的方法有且有能有一个非原始类型参数
 71  checkArgument(  72               parameterTypes.length == 1,  73               "Method %s has @Subscribe annotation but has %s parameters. "
 74                   + "Subscriber methods must have exactly 1 parameter.",  75  method,  76  parameterTypes.length);  77 
 78  checkArgument(  79               !parameterTypes[0].isPrimitive(),  80               "@Subscribe method %s's parameter is %s. "
 81                   + "Subscriber methods cannot accept primitives. "
 82                   + "Consider changing the parameter to %s.",  83  method,  84               parameterTypes[0].getName(),  85               Primitives.wrap(parameterTypes[0]).getSimpleName());  86 
 87           MethodIdentifier ident = new MethodIdentifier(method);  88           // 重写的方法只放入一次
 89           if (!identifiers.containsKey(ident)) {  90  identifiers.put(ident, method);  91  }  92  }  93  }  94  }  95     return ImmutableList.copyOf(identifiers.values());  96  }  97 
 98 
 99   // 创建subscriber
100   static Subscriber create(EventBus bus, Object listener, Method method) { 101     return isDeclaredThreadSafe(method) 102         ? new Subscriber(bus, listener, method) 103         : new SynchronizedSubscriber(bus, listener, method); 104  } 105 
106  @VisibleForTesting 107   static final class SynchronizedSubscriber extends Subscriber { 108 
109     private SynchronizedSubscriber(EventBus bus, Object target, Method method) { 110       super(bus, target, method); 111  } 112 
113  @Override 114     void invokeSubscriberMethod(Object event) throws InvocationTargetException { 115       synchronized (this) { 116         super.invokeSubscriberMethod(event); 117  } 118  } 119   }

值得注意的是subscriber的生成,即便你使用了AsyncEventbus,却没有在处理方法上声明@AllowConcurrentEvents,那么在处理event时仍然是同步执行的,注册流程并发安全问题请看第三部分

2.分发流程

先看下如何获得event对应的subscriber

 1 public void post(Object event) {  2     Iterator<Subscriber> eventSubscribers = subscribers.getSubscribers(event);  3     if (eventSubscribers.hasNext()) {  4       // 分发,dispatcher有三种实现,ImmediateDispatcher(同步处理event,深度优先)  5       // LegacyAsyncDispatcher(异步处理event)  6       // PerThreadQueuedDispatcher(默认,同步调用,广度优先) 内置队列,可以保证同一线程内的event的顺序
 7  dispatcher.dispatch(event, eventSubscribers);  8     } else if (!(event instanceof DeadEvent)) {  9       // the event had no subscribers and was not itself a DeadEvent 10       // 把所有没有被订阅的event包装成deadevent,用户可以自己定义处理deadevent的方法,作为兜底
11       post(new DeadEvent(this, event)); 12  } 13  } 14 
15   Iterator<Subscriber> getSubscribers(Object event) { 16     //获得event的所有父类及自身的class(包括接口),从获取subscriber的流程来看,post一个event 17     // 时,除了调用该event的处理方法也会调用该event父类的处理方法
18     ImmutableSet<Class<?>> eventTypes = flattenHierarchy(event.getClass()); 19 
20     List<Iterator<Subscriber>> subscriberIterators =
21  Lists.newArrayListWithCapacity(eventTypes.size()); 22 
23     for (Class<?> eventType : eventTypes) { 24       CopyOnWriteArraySet<Subscriber> eventSubscribers = subscribers.get(eventType); 25       if (eventSubscribers != null) { 26         // eager no-copy snapshot
27  subscriberIterators.add(eventSubscribers.iterator()); 28  } 29  } 30     // 类似flatmap,扁平化
31     return Iterators.concat(subscriberIterators.iterator()); 32  } 33 
34  @VisibleForTesting 35   static ImmutableSet<Class<?>> flattenHierarchy(Class<?> concreteClass) { 36     try { 37       return flattenHierarchyCache.getUnchecked(concreteClass); 38     } catch (UncheckedExecutionException e) { 39       throw Throwables.propagate(e.getCause()); 40  } 41  } 42 
43   private static final LoadingCache<Class<?>, ImmutableSet<Class<?>>> flattenHierarchyCache =
44  CacheBuilder.newBuilder() 45  .weakKeys() 46  .build( 47               new CacheLoader<Class<?>, ImmutableSet<Class<?>>>() { 48                 // <Class<?>> is actually needed to compile
49                 @SuppressWarnings("RedundantTypeArguments") 50  @Override 51                 public ImmutableSet<Class<?>> load(Class<?> concreteClass) { 52                   return ImmutableSet.<Class<?>>copyOf( 53  TypeToken.of(concreteClass).getTypes().rawTypes()); 54  } 55               });

从代码可以看出,先对该event查询上级,最后把所有event对应的subscriber返回,因此触发一个event时,其父event的subscriber也会被调用

接下来看下post,流程eventbus有三种dispatcher(ImmediaDispatcher,PerThreadDispatcher,LegacyAsyncDispatcher)eventbus使用的是PerThreadDispatcher,AsyncEventBus使用LegacyAsyncDispatcher

①ImmediaDispatcher

从名字中的Immedia"即时"就能看出这个dispatcher收到event后会立即处理,不会进行异步处理

代码如下:

 从图中可以看出ImmediaDispatcher是针对每个event,调用其全部的subscriber进行处理,即尽可能多的调用subscriber,所以是广度优先,这个dispatcher目前未被使用,了解即可

 ②PerThreadQueueDispatcher(默认的dispatcher)

同样从名称可以看出这种dispatcher是一个thread一个queue,那我们可以猜测内部有可能用了ThreadLocal,既然用了队列,说明想要起到一个缓冲event处理的过程

队列的缓冲功能使得dispatcher有能力吞吐更高的event,因此是一种深度优先策略,此外每线程每队列的方式保证了event处理过程是对于每个线程而言是有序的,同样是广度优先,对

每一个event都分发到相关的subscriber进行处理,除此之外还有一个值得称道的点,即Dispatching变量的使用,规避了递归产生的死循环问题

 1 private static final class PerThreadQueuedDispatcher extends Dispatcher {  2 
 3     // This dispatcher matches the original dispatch behavior of EventBus.
 4 
 5     /** Per-thread queue of events to dispatch. */
 6     private final ThreadLocal<Queue<Event>> queue =
 7         new ThreadLocal<Queue<Event>>() {  8  @Override  9           protected Queue<Event> initialValue() { 10             return Queues.newArrayDeque(); 11  } 12  }; 13 
14     /** Per-thread dispatch state, used to avoid reentrant event dispatching. */
15     private final ThreadLocal<Boolean> dispatching =
16         new ThreadLocal<Boolean>() { 17  @Override 18           protected Boolean initialValue() { 19             return false; 20  } 21  }; 22 
23  @Override 24     void dispatch(Object event, Iterator<Subscriber> subscribers) { 25  checkNotNull(event); 26  checkNotNull(subscribers); 27       // 如果只从代码来看,PerThreadQueuedDispatcher的dispatch方法始终 28       // 是单线程调用,并不需要ThreadLocal,但从拓展的角度看,当用户自定义xxeventbus自己实现分发逻辑时,PerThreadQueuedDispatcher实现了线程安全的dispatch 29       //因为eventbus有可能会被多个线程调用,从框架的角度看,无论用户是否多线程调用,都应该要保证线程安全 30       // 引用issue 3530中 https://github.com/google/guava/issues/3530 的一个回答 if multiple threads are dispatching to this dispatcher, they will read different values for queueForThread and dispatching.
31       Queue<Event> queueForThread = queue.get(); 32       queueForThread.offer(new Event(event, subscribers)); 33 
34       // 如果未开始分发事件则进行处理,解决subscriber递归调用post产生的死循环
35       if (!dispatching.get()) { 36         dispatching.set(true); 37         try { 38  Event nextEvent; 39           // 对每一个event,分发到相关的subscribers中
40           while ((nextEvent = queueForThread.poll()) != null) { 41             while (nextEvent.subscribers.hasNext()) { 42  nextEvent.subscribers.next().dispatchEvent(nextEvent.event); 43  } 44  } 45         } finally { 46  dispatching.remove(); 47  queue.remove(); 48  } 49  } 50     }

接下来看下刚刚说的dispatching的妙用demo

在guava-test下建立一个新的目录方便我们修改源码后进行测试,测试代码如下

Listener

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2020-11-23  5  */
 6 public class Listener {  7 
 8     private final EventBus eventBus;  9 
10     public Listener(EventBus eventBus) { 11         this.eventBus = eventBus; 12  } 13 
14  @Subscribe 15     public void record(String s) { 16  eventBus.post(s); 17         System.out.println("receive:"+ s); 18  } 19 }

Producer

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2020-11-23  5  */
 6 public class Producer {  7 
 8     public String produce() {  9         return "hello"; 10  } 11 }

Main

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2020-11-23  5  */
 6 public class Main {  7 
 8     public static void main(String[] args) {  9         EventBus eventBus = new EventBus(); 10         Listener listener = new Listener(eventBus); 11         Producer producer = new Producer(); 12  eventBus.register(listener); 13         String produce = producer.produce(); 14  eventBus.post(produce); 15  } 16 
17 }

代码很简单,问题在于Listener递归调用了post方法,按照代码示意运行后会栈溢出(队列中event堆积),receive:hello永远不会打印,可事实真的如此吗?

 很奇怪是吗,并没有产生堆栈溢出的问题,反而是不停的输出receive:hello,接下来我们修改下PerThreadDispatcher的代码,将dispatching变量注释掉

  

再执行下demo

 果然溢出了,关键点就在于dispatching变量对于同一线程的递归分发进行了处理,已经处理过就不再次进行分发,这样我们的递归调用不停的产生的event得以被处理

 ③LegacyAsyncDispatcher

看名字挺奇怪的,但有async字样,所以是异步的dispatcher,LegacyAsyncDispacther是AsyncEventBus的专用dispatcher,由于将event对应的subscriber拆分后入队,多线程情况下无法保证event入队顺序,也就无法保证subscriber的调用顺序,但这样处理实现了深度优先,即尽可能多的调用不同的event的subscriber,与PerThreadDispatcher相比代码难度小了不少,由于AsyncEventBus的初始化需要传入线程池参数,所以AsyncEventBus实现了真正的异步处理

 1 /** Implementation of a {@link #legacyAsync()} dispatcher. */
 2   private static final class LegacyAsyncDispatcher extends Dispatcher {  3 
 4     // This dispatcher matches the original dispatch behavior of AsyncEventBus.  5     //
 6     // We can't really make any guarantees about the overall dispatch order for this dispatcher in  7     // a multithreaded environment for a couple reasons:  8     //
 9     // 1. Subscribers to events posted on different threads can be interleaved with each other 10     // freely. (A event on one thread, B event on another could yield any of 11     // [a1, a2, a3, b1, b2], [a1, b2, a2, a3, b2], [a1, b2, b3, a2, a3], etc.) 12     // 2. It's possible for subscribers to actually be dispatched to in a different order than they 13     // were added to the queue. It's easily possible for one thread to take the head of the 14     // queue, immediately followed by another thread taking the next element in the queue. That 15     // second thread can then dispatch to the subscriber it took before the first thread does. 16     //
17     // All this makes me really wonder if there's any value in queueing here at all. A dispatcher 18     // that simply loops through the subscribers and dispatches the event to each would actually 19     // probably provide a stronger order guarantee, though that order would obviously be different 20     // in some cases.
21 
22     /** Global event queue. */
23     private final ConcurrentLinkedQueue<EventWithSubscriber> queue =
24  Queues.newConcurrentLinkedQueue(); 25 
26  @Override 27     void dispatch(Object event, Iterator<Subscriber> subscribers) { 28  checkNotNull(event); 29       // 拆分后入队
30       while (subscribers.hasNext()) { 31         queue.add(new EventWithSubscriber(event, subscribers.next())); 32  } 33 
34  EventWithSubscriber e; 35       while ((e = queue.poll()) != null) { 36  e.subscriber.dispatchEvent(e.event); 37  } 38  } 39 
40     private static final class EventWithSubscriber { 41       private final Object event; 42       private final Subscriber subscriber; 43 
44       private EventWithSubscriber(Object event, Subscriber subscriber) { 45         this.event = event; 46         this.subscriber = subscriber; 47  } 48  } 49   }

注意点:

1.eventbus默认使用的线程池MoreExecutors.directExecutor(),其execute方法是直接调用传入的runnable的run方法,是非异步的 

2.使用AsyncEventBus时,请在对应的方法上添加@AllowConcurrenEvents

三.从并发安全的角度出发,对比下新老版本的注册流程

本部分为补充内容,重点探讨新老版本的注册并发安全问题,可略过

从20.0开始,event bus的注册程变成了上面分析的,那么之前的版本是如何实现的呢,一起来分析下.先切到16.0 的tag,注册代码如下

显然是使用了读写锁,不加锁,eventType会相互覆盖(HashMultiMap是非线程安全的),先给eventbus加个getSubscriberByType(),记得修改下EventSubscriber的修饰符为public,然后做个多线程的测试

 1 /**
 2  * @author tele  3  * @Description  4  * @create 2021-01-24  5  */
 6 public class ListenerA {  7 
 8  @Subscribe  9     public void handle(String msg) { 10         System.out.println("ListenerA:" + msg); 11  } 12 
13 } 14 
15 /**
16  * @author tele 17  * @Description 18  * @create 2021-01-24 19  */
20 public class ListenerB { 21 
22  @Subscribe 23     public void handle(String msg) { 24         System.out.println("ListenerB:" + msg); 25  } 26 
27 } 28 
29 /**
30  * @author tele 31  * @Description 32  * @create 2021-01-24 33  */
34 public class Main { 35 
36 
37     public static void main(String[] args) throws InterruptedException { 38 
39         final EventBus eventBus = new EventBus(); 40         final ListenerA a = new ListenerA(); 41         ListenerB b = new ListenerB(); 42         CountDownLatch countDownLatch = new CountDownLatch(6); 43 
44         Runnable r1 = ()-> { 45  eventBus.register(a); 46  countDownLatch.countDown(); 47  }; 48         Thread t1 = new Thread(r1); 49         Thread t2 = new Thread(r1); 50         Thread t3 = new Thread(r1); 51 
52         Runnable r2 = ()-> { 53  eventBus.register(b); 54  countDownLatch.countDown(); 55  }; 56         Thread t4 = new Thread(r2); 57         Thread t5 = new Thread(r2); 58         Thread t6 = new Thread(r2); 59 
60  t1.start(); 61  t2.start(); 62  t3.start(); 63  t4.start(); 64  t5.start(); 65  t6.start(); 66  countDownLatch.await(); 67         SetMultimap<Class<?>, EventSubscriber> subscribersByType = eventBus.getSubscribersByType(); 68         subscribersByType.asMap().forEach((k,v)-> { 69             System.out.println("key:" + k); 70  v.forEach(System.out::println); 71  }); 72  } 73 }

输出结果如下:

 ok,没啥问题,接下来再修改下源码把使用读写锁的两行代码注释掉,再执行下代码

 

 输出结果如下:

显然,ListenerA的注册结果被覆盖了,这里简要说下原因,subscribersByType,k-v结构简略表示为 K-event.class ,value-Set<Listener.class>,我们知道java中的hashset不重复的特性是基于hashmap实现的.同样的,这里的SetMultiMap实际是用的HashMultiMap,翻翻源码就知道了,内部存储数据的容器是hashmap,那么这个问题就转换成了hashmap的线程安全问题了,hashmap多线程put hash相同的元素会产生丢失问题,多线程下同时put get有可能导致get 出null.了解到这我们就知道为什么要加锁了,使用读写锁的版本一直持续到19.0,从20.0开始从开始使用并发容器代替读写锁,因为对于eventbus而言始终是读远大于写,基于cow机制实现的CopyOnWriteArrayList在读写同时进行时通过延迟更新的策略不阻塞线程,对于event的处理 而言是可以接受的,因为本次event在post时没有分发到对应的subsriber,下次同类型的event触发就ok了,事实上,这种场景极少,因为从使用经历来看,一般是项目启动时就注册,分发都是需要处理逻辑时才会触发,不阻塞与每次都需要加解读锁相比,显然不阻塞的性能更好了.老版本的分发流程不再赘述,因为确实没啥好分析的了,如果你能看懂上面分析的新版本的dispatcher,当你看老版本的时候就会感觉很简单了

四.优势与缺陷

1.进程内使用,无法实现跨进程处理,需要跨进程传递消息,还是老老实实的用消息队列吧

2.和redis一样基于内存,天然的不可靠,redis好歹还有aof和rdb,可event bus没有任何持久化机制

3.个人对新版的Subscriber实现方式有点看法,没必须要把线程池参数传递给Subscriber,因为Subscriber只是被执行者,16.0的版本线程池参数是AsyncEventBus持有

4.优势:简单,开箱即用

五.小结

1.只分析了注册与分发流程,异常处理之类的没有涉及,用法的话,网上已经很多了,不再赘述

2.event bus的代码很巧妙,细细品味还有很多巧妙之处,比如上面那个dispatching变量

六.参考文档

1.github https://github.com/google/guava/wiki/EventBusExplained#for-producers

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM