常見的三種唯一id生成方式
1 UUID
常見的方式。可以利用數據庫也可以利用程序生成,一般來說全球唯一。
優點:
1)簡單,代碼方便。
2)生成ID性能非常好,基本不會有性能問題。
3)全球唯一,在遇見數據遷移,系統數據合並,或者數據庫變更等情況下,可以從容應對。
缺點:
1)沒有排序,無法保證趨勢遞增。
2)UUID往往是使用字符串存儲,查詢的效率比較低。
3)存儲空間比較大,如果是海量數據庫,就需要考慮存儲量的問題。
4)傳輸數據量大
5)不可讀。
2 Redis
當使用數據庫來生成ID性能不夠要求的時候,我們可以嘗試使用Redis來生成ID。這主要依賴於Redis是單線程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作 INCR和INCRBY來實現。
優點:
1)不依賴於數據庫,靈活方便,且性能優於數據庫。
2)數字ID天然排序,對分頁或者需要排序的結果很有幫助。
缺點:
1)如果系統中沒有Redis,還需要引入新的組件,增加系統復雜度。
2)需要編碼和配置的工作量比較大。
3)網絡傳輸造成性能下降。
3 開源算法snowflake
snowflake是Twitter開源的分布式ID生成算法,結果是一個long型的ID。其核心思想是:使用41bit作為毫秒數,10bit作為機器的ID(5個bit是數據中心,5個bit的機器ID),12bit作為毫秒內的流水號(意味着每個節點在每毫秒可以產生 4096 個 ID),最后還有一個符號位,永遠是0
快速入門
snowflake是一個算法,不是一個Jar,所以我們可以直接引入一個工具類放在公共模塊中,工具類
公共模
package com.changgou.util; import java.lang.management.ManagementFactory; import java.net.InetAddress; import java.net.NetworkInterface; /** * <p>名稱:IdWorker.java</p> * <p>描述:分布式自增長ID</p> * <pre> * Twitter的 Snowflake JAVA實現方案 * </pre> * 核心代碼為其IdWorker這個類實現,其原理結構如下,我分別用一個0表示一位,用—分割開部分的作用: * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000 * 在上面的字符串中,第一位為未使用(實際上也可作為long的符號位),接下來的41位為毫秒級時間, * 然后5位datacenter標識位,5位機器ID(並不算標識符,實際是為線程標識), * 然后12位該毫秒內的當前毫秒內的計數,加起來剛好64位,為一個Long型。 * 這樣的好處是,整體上按照時間自增排序,並且整個分布式系統內不會產生ID碰撞(由datacenter和機器ID作區分), * 並且效率較高,經測試,snowflake每秒能夠產生26萬ID左右,完全滿足需要。 * <p> * 64位ID (42(毫秒)+5(機器ID)+5(業務編碼)+12(重復累加)) * * @author Polim */ public class IdWorker { // 時間起始標記點,作為基准,一般取系統的最近時間(一旦確定不能變動) private final static long twepoch = 1288834974657L; // 機器標識位數 private final static long workerIdBits = 5L; // 數據中心標識位數 private final static long datacenterIdBits = 5L; // 機器ID最大值 private final static long maxWorkerId = -1L ^ (-1L << workerIdBits); // 數據中心ID最大值 private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // 毫秒內自增位 private final static long sequenceBits = 12L; // 機器ID偏左移12位 private final static long workerIdShift = sequenceBits; // 數據中心ID左移17位 private final static long datacenterIdShift = sequenceBits + workerIdBits; // 時間毫秒左移22位 private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final static long sequenceMask = -1L ^ (-1L << sequenceBits); /* 上次生產id時間戳 */ private static long lastTimestamp = -1L; // 0,並發控制 private long sequence = 0L; private final long workerId; // 數據標識id部分 private final long datacenterId; public IdWorker(){ this.datacenterId = getDatacenterId(maxDatacenterId); this.workerId = getMaxWorkerId(datacenterId, maxWorkerId); } /** * @param workerId * 工作機器ID * @param datacenterId * 序列號 */ public IdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } /** * 獲取下一個ID * * @return */ public synchronized long nextId() { long timestamp = timeGen(); if (timestamp < lastTimestamp) { throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } if (lastTimestamp == timestamp) { // 當前毫秒內,則+1 sequence = (sequence + 1) & sequenceMask; if (sequence == 0) { // 當前毫秒內計數滿了,則等待下一秒 timestamp = tilNextMillis(lastTimestamp); } } else { sequence = 0L; } lastTimestamp = timestamp; // ID偏移組合生成最終的ID,並返回ID long nextId = ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence; return nextId; } private long tilNextMillis(final long lastTimestamp) { long timestamp = this.timeGen(); while (timestamp <= lastTimestamp) { timestamp = this.timeGen(); } return timestamp; } private long timeGen() { return System.currentTimeMillis(); } /** * <p> * 獲取 maxWorkerId * </p> */ protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) { StringBuffer mpid = new StringBuffer(); mpid.append(datacenterId); String name = ManagementFactory.getRuntimeMXBean().getName(); if (!name.isEmpty()) { /* * GET jvmPid */ mpid.append(name.split("@")[0]); } /* * MAC + PID 的 hashcode 獲取16個低位 */ return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1); } /** * <p> * 數據標識id部分 * </p> */ protected static long getDatacenterId(long maxDatacenterId) { long id = 0L; try { InetAddress ip = InetAddress.getLocalHost(); NetworkInterface network = NetworkInterface.getByInetAddress(ip); if (network == null) { id = 1L; } else { byte[] mac = network.getHardwareAddress(); id = ((0x000000FF & (long) mac[mac.length - 1]) | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6; id = id % (maxDatacenterId + 1); } } catch (Exception e) { System.out.println(" getDatacenterId: " + e.getMessage()); } return id; } public static void main(String[] args) { IdWorker idWorker=new IdWorker(0,0); for(int i=0;i<10000;i++){ long nextId = idWorker.nextId(); System.out.println(nextId); } } }
塊的方法
public class IdTest {
public static void main(String[] args) {
IdWorker idWorker = new IdWorker(1,1);
for (int i = 0; i < 1000; i++) {
long id = idWorker.nextId();
System.out.println(id);
}
}
}
實際運用
在application.yml里定義兩個變量(自己起名就可以)
#雪花算法要使用的機器id和序列號范圍,這兩個名字是自己起的
workerId: 0
datacenterId: 0
在引導類里編寫一個bean
@Value("${workerId}")
private Integer workerId;
@Value("${datacenterId}")
private Integer datacenterId;
@Bean
public IdWorker idWorker(){
return new IdWorker(workerId,datacenterId);
}
之后在需要生成id的地方注入這個bean即可
1