darknet yolo4 如何配置 CUDA 和 cuDNN?


如何配置 CUDA 和 cuDNN?

為何神經網絡框架需要配置 CUDA 和 cuDNN

通常一個神經網絡框架,使用GPU加速訓練或推理時都需要配置 CUDA 和 cuDNN,cuDNN 是一個 C 函數風格的動態庫,像下面的這些框架都調用了 cuDNN 的函數進行 GPU 加速計算,而 cuDNN 又依賴於 CUDA,故我們需要配置 CUDA 和 cuDNN。

Caffe Caffe2 Pytorch TensorFlow PaddlePaddle Chainer Mxnet Torch Wolfram Language 等框架都使用到了 cuDNN。

通過以上了解得知,我們第一步是需要確定下需要的 cuDNN 版本,這個版本最好根據具體的框架的開發者給出的一個推薦版本確定即可,確定好 cuDNN 版本后,我們在 NVIDIA(英偉達) 官網上面找到相對應的 CUDA 版本即可。

到哪里下載安裝包?

https://developer.nvidia.com/cuda-downloads (一般不用下載最新的,最新的可能在官網都找不到對應的 cuDNN 版本,比如 CUDA 11.2 截至2021/01/08)

https://developer.nvidia.com/cudnn (需要注冊賬戶才能下載)

https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html (這個可以找到對應的 CUDA 版本)

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html (cuDNN 安裝教程)

待 cuDNN(需要注冊賬戶才能下載) 和 CUDA (如有補丁也把補丁下載下來) 全部下載完畢后,我們可以開始配置環境了。

如果找不到在哪里下載歷史安裝包,我們可以網頁中尋找 Archived 關鍵字,點進去即可。
注意 cuDNN7 和 cuDNN8 的版本區別,在之前推斷和訓練放在一個動態庫,現在推斷和訓練放在不同動態庫,這樣部署時僅部署推斷動態庫即可,當前性能有很大提升,可以看官網測試圖。

如何在 windows 編譯最新 darknet(gpu版本) ?

安裝環境:

Win10 x64 企業版
GeForce GTX 1660 Ti (6G)

前置條件:

VS2017/VS2019 都已經安裝完成。
git 工具已經安裝完成。

以下內容是需要的提前下載好。

cuda_10.2.89_441.22_win10.exe
cuda_10.2.1_win10.exe 補丁1
cuda_10.2.2_win10.exe 補丁2
cudnn-10.2-windows10-x64-v7.6.5.32.zip
安裝步驟

這里以配置 darknet 為例子,我們安裝 cuDNN 版本 7 最后的一個版本。

  1. 安裝 CUDA (如有補丁則在安裝 CUDA 之后繼續安裝補丁)
驗證 CUDA 安裝是否成功 
nvcc -V
  1. 安裝 cuDNN
假設 CUDA 安裝目錄位置 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x
假設 cuDNN 安裝目錄位置 <installpath>

Copy <installpath>\cuda\bin\cudnn*.dll to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\bin.
Copy <installpath>\cuda\include\cudnn*.h to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\include.
Copy <installpath>\cuda\lib\x64\cudnn*.lib to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\lib\x64.

直接 CTRL+C CTRL+V 復制粘貼到目標目錄即可,當然也可以使用以上命令行復制。

配置環境變量一般安裝 CUDA 時,自動幫你配置好了。
windows 版本可沒有驗證,linux 版本到有驗證,具體可參考 https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
  1. 下載 OpenCV
直接官網下載 4.x 或 3.x 最新的版本即可。
運行執行程序解壓到一個位置。
  1. 下載 darknet 源代碼
下載源代碼
git clone https://github.com/AlexeyAB/darknet.git

打開 darknet gpu 工程
.\darknet\build\darknet\darknet.sln

修改工程 Release x64

配置屬性頁中 opencv includelib 目錄
配置屬性頁中 cuda includelib 目錄


使用 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe 工具查詢顯卡計算能力。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite>deviceQuery.exe
deviceQuery.exe Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1660 Ti"
  CUDA Driver Version / Runtime Version          11.1 / 10.2
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 6144 MBytes (6442450944 bytes)
  (24) Multiprocessors, ( 64) CUDA Cores/MP:     1536 CUDA Cores
  GPU Max Clock rate:                            1770 MHz (1.77 GHz)
  Memory Clock rate:                             6001 Mhz
  Memory Bus Width:                              192-bit
  L2 Cache Size:                                 1572864 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               zu bytes
  Total amount of shared memory per block:       zu bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          zu bytes
  Texture alignment:                             zu bytes
  Concurrent copy and kernel execution:          Yes with 6 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  CUDA Device Driver Mode (TCC or WDDM):         WDDM (Windows Display Driver Model)
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.1, CUDA Runtime Version = 10.2, NumDevs = 1, Device0 = GeForce GTX 1660 Ti
Result = PASS

比如 CUDA Capability 7.5,則計算能力就是 7.5.
我們還可以看到當前的顯卡驅動是支持 CUDA 11.1 的,(當然你更新到最新顯卡驅動是可以支持 CUDA 11.2 截至2021/01/08)。
我們還可以看到安裝的CUDA版本是 10.2

回到 darknet 解決方案中,鼠標右鍵打開屬性頁。
修改 CUDA C/C++ -> Device -> Code Generation 選項內容以符合你顯卡計算能力。
比如我顯卡計算能力 7.5 則修改為 compute_75,sm_75

更多內容可以使用 nvcc --help 查看。

然后就可以編譯了,經過以上步驟一般可以順利編譯完成。

下載 yolo4 網絡配置文件和 yolo4 權重文件后,執行以下命令

darknet.exe detect yolov4.cfg yolov4.weights -ext_output dog.jpg

 CUDA-version: 10020 (11010), cuDNN: 7.6.5, CUDNN_HALF=1, GPU count: 1
 CUDNN_HALF=1
 # 10020 即 CUDA 10.2 版本
 # 11010 即當前顯卡驅動可以支持 CUDA 11.1
 OpenCV version: 4.5.1
 0 : compute_capability = 750, cudnn_half = 1, GPU: GeForce GTX 1660 Ti
net.optimized_memory = 0
mini_batch = 1, batch = 8, time_steps = 1, train = 0
   layer   filters  size/strd(dil)      input                output
   0 conv     32       3 x 3/ 1    608 x 608 x   3 ->  608 x 608 x  32 0.639 BF
   1 conv     64       3 x 3/ 2    608 x 608 x  32 ->  304 x 304 x  64 3.407 BF
   2 conv     64       1 x 1/ 1    304 x 304 x  64 ->  304 x 304 x  64 0.757 BF
   3 route  1                                      ->  304 x 304 x  64
   4 conv     64       1 x 1/ 1    304 x 304 x  64 ->  304 x 304 x  64 0.757 BF
   5 conv     32       1 x 1/ 1    304 x 304 x  64 ->  304 x 304 x  32 0.379 BF
   6 conv     64       3 x 3/ 1    304 x 304 x  32 ->  304 x 304 x  64 3.407 BF
   7 Shortcut Layer: 4,  wt = 0, wn = 0, outputs: 304 x 304 x  64 0.006 BF
   8 conv     64       1 x 1/ 1    304 x 304 x  64 ->  304 x 304 x  64 0.757 BF
   9 route  8 2                                    ->  304 x 304 x 128
  10 conv     64       1 x 1/ 1    304 x 304 x 128 ->  304 x 304 x  64 1.514 BF
  11 conv    128       3 x 3/ 2    304 x 304 x  64 ->  152 x 152 x 128 3.407 BF
  12 conv     64       1 x 1/ 1    152 x 152 x 128 ->  152 x 152 x  64 0.379 BF
  13 route  11                                     ->  152 x 152 x 128
  14 conv     64       1 x 1/ 1    152 x 152 x 128 ->  152 x 152 x  64 0.379 BF
  15 conv     64       1 x 1/ 1    152 x 152 x  64 ->  152 x 152 x  64 0.189 BF
  16 conv     64       3 x 3/ 1    152 x 152 x  64 ->  152 x 152 x  64 1.703 BF
  17 Shortcut Layer: 14,  wt = 0, wn = 0, outputs: 152 x 152 x  64 0.001 BF
  18 conv     64       1 x 1/ 1    152 x 152 x  64 ->  152 x 152 x  64 0.189 BF
  19 conv     64       3 x 3/ 1    152 x 152 x  64 ->  152 x 152 x  64 1.703 BF
  20 Shortcut Layer: 17,  wt = 0, wn = 0, outputs: 152 x 152 x  64 0.001 BF
  21 conv     64       1 x 1/ 1    152 x 152 x  64 ->  152 x 152 x  64 0.189 BF
  22 route  21 12                                  ->  152 x 152 x 128
  23 conv    128       1 x 1/ 1    152 x 152 x 128 ->  152 x 152 x 128 0.757 BF
  24 conv    256       3 x 3/ 2    152 x 152 x 128 ->   76 x  76 x 256 3.407 BF
  25 conv    128       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 128 0.379 BF
  26 route  24                                     ->   76 x  76 x 256
  27 conv    128       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 128 0.379 BF
  28 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  29 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  30 Shortcut Layer: 27,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  31 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  32 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  33 Shortcut Layer: 30,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  34 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  35 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  36 Shortcut Layer: 33,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  37 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  38 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  39 Shortcut Layer: 36,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  40 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  41 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  42 Shortcut Layer: 39,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  43 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  44 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  45 Shortcut Layer: 42,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  46 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  47 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  48 Shortcut Layer: 45,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  49 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  50 conv    128       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 128 1.703 BF
  51 Shortcut Layer: 48,  wt = 0, wn = 0, outputs:  76 x  76 x 128 0.001 BF
  52 conv    128       1 x 1/ 1     76 x  76 x 128 ->   76 x  76 x 128 0.189 BF
  53 route  52 25                                  ->   76 x  76 x 256
  54 conv    256       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 256 0.757 BF
  55 conv    512       3 x 3/ 2     76 x  76 x 256 ->   38 x  38 x 512 3.407 BF
  56 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
  57 route  55                                     ->   38 x  38 x 512
  58 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
  59 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  60 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  61 Shortcut Layer: 58,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  62 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  63 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  64 Shortcut Layer: 61,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  65 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  66 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  67 Shortcut Layer: 64,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  68 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  69 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  70 Shortcut Layer: 67,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  71 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  72 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  73 Shortcut Layer: 70,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  74 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  75 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  76 Shortcut Layer: 73,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  77 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  78 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  79 Shortcut Layer: 76,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  80 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  81 conv    256       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 256 1.703 BF
  82 Shortcut Layer: 79,  wt = 0, wn = 0, outputs:  38 x  38 x 256 0.000 BF
  83 conv    256       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 256 0.189 BF
  84 route  83 56                                  ->   38 x  38 x 512
  85 conv    512       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 512 0.757 BF
  86 conv   1024       3 x 3/ 2     38 x  38 x 512 ->   19 x  19 x1024 3.407 BF
  87 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
  88 route  86                                     ->   19 x  19 x1024
  89 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
  90 conv    512       1 x 1/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.189 BF
  91 conv    512       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x 512 1.703 BF
  92 Shortcut Layer: 89,  wt = 0, wn = 0, outputs:  19 x  19 x 512 0.000 BF
  93 conv    512       1 x 1/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.189 BF
  94 conv    512       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x 512 1.703 BF
  95 Shortcut Layer: 92,  wt = 0, wn = 0, outputs:  19 x  19 x 512 0.000 BF
  96 conv    512       1 x 1/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.189 BF
  97 conv    512       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x 512 1.703 BF
  98 Shortcut Layer: 95,  wt = 0, wn = 0, outputs:  19 x  19 x 512 0.000 BF
  99 conv    512       1 x 1/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.189 BF
 100 conv    512       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x 512 1.703 BF
 101 Shortcut Layer: 98,  wt = 0, wn = 0, outputs:  19 x  19 x 512 0.000 BF
 102 conv    512       1 x 1/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.189 BF
 103 route  102 87                                 ->   19 x  19 x1024
 104 conv   1024       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x1024 0.757 BF
 105 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
 106 conv   1024       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x1024 3.407 BF
 107 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
 108 max                5x 5/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.005 BF
 109 route  107                                            ->   19 x  19 x 512
 110 max                9x 9/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.015 BF
 111 route  107                                            ->   19 x  19 x 512
 112 max               13x13/ 1     19 x  19 x 512 ->   19 x  19 x 512 0.031 BF
 113 route  112 110 108 107                        ->   19 x  19 x2048
 114 conv    512       1 x 1/ 1     19 x  19 x2048 ->   19 x  19 x 512 0.757 BF
 115 conv   1024       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x1024 3.407 BF
 116 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
 117 conv    256       1 x 1/ 1     19 x  19 x 512 ->   19 x  19 x 256 0.095 BF
 118 upsample                 2x    19 x  19 x 256 ->   38 x  38 x 256
 119 route  85                                     ->   38 x  38 x 512
 120 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
 121 route  120 118                                ->   38 x  38 x 512
 122 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
 123 conv    512       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 512 3.407 BF
 124 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
 125 conv    512       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 512 3.407 BF
 126 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
 127 conv    128       1 x 1/ 1     38 x  38 x 256 ->   38 x  38 x 128 0.095 BF
 128 upsample                 2x    38 x  38 x 128 ->   76 x  76 x 128
 129 route  54                                     ->   76 x  76 x 256
 130 conv    128       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 128 0.379 BF
 131 route  130 128                                ->   76 x  76 x 256
 132 conv    128       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 128 0.379 BF
 133 conv    256       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 256 3.407 BF
 134 conv    128       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 128 0.379 BF
 135 conv    256       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 256 3.407 BF
 136 conv    128       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 128 0.379 BF
 137 conv    256       3 x 3/ 1     76 x  76 x 128 ->   76 x  76 x 256 3.407 BF
 138 conv    255       1 x 1/ 1     76 x  76 x 256 ->   76 x  76 x 255 0.754 BF
 139 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.20
nms_kind: greedynms (1), beta = 0.600000
 140 route  136                                            ->   76 x  76 x 128
 141 conv    256       3 x 3/ 2     76 x  76 x 128 ->   38 x  38 x 256 0.852 BF
 142 route  141 126                                ->   38 x  38 x 512
 143 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
 144 conv    512       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 512 3.407 BF
 145 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
 146 conv    512       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 512 3.407 BF
 147 conv    256       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 256 0.379 BF
 148 conv    512       3 x 3/ 1     38 x  38 x 256 ->   38 x  38 x 512 3.407 BF
 149 conv    255       1 x 1/ 1     38 x  38 x 512 ->   38 x  38 x 255 0.377 BF
 150 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.10
nms_kind: greedynms (1), beta = 0.600000
 151 route  147                                            ->   38 x  38 x 256
 152 conv    512       3 x 3/ 2     38 x  38 x 256 ->   19 x  19 x 512 0.852 BF
 153 route  152 116                                ->   19 x  19 x1024
 154 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
 155 conv   1024       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x1024 3.407 BF
 156 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
 157 conv   1024       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x1024 3.407 BF
 158 conv    512       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 512 0.379 BF
 159 conv   1024       3 x 3/ 1     19 x  19 x 512 ->   19 x  19 x1024 3.407 BF
 160 conv    255       1 x 1/ 1     19 x  19 x1024 ->   19 x  19 x 255 0.189 BF
 161 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.05
nms_kind: greedynms (1), beta = 0.600000
Total BFLOPS 128.459
avg_outputs = 1068395
 Allocate additional workspace_size = 52.43 MB
Loading weights from yolov4.weights...
 seen 64, trained: 32032 K-images (500 Kilo-batches_64)
Done! Loaded 162 layers from weights-file
 Detection layer: 139 - type = 28
 Detection layer: 150 - type = 28
 Detection layer: 161 - type = 28
dog.jpg: Predicted in 182.040000 milli-seconds.
bicycle: 92%    (left_x:  115   top_y:  128   width:  458   height:  299)
dog: 98%        (left_x:  129   top_y:  225   width:  184   height:  316)
truck: 92%      (left_x:  464   top_y:   77   width:  221   height:   93)
pottedplant: 33%        (left_x:  681   top_y:  109   width:   37   height:   46)

至於為何沒有安裝最新版本,因為我嘗試安裝最新版本,cuda 11.2(沒對應的 cuDNN),這里選擇 CUDA 11.1 和對應的 cuDNN 11.1 進行安裝,然而沒有什么效果,可能是 cuDNN7和cuDNN8 動態庫拆分分發的原因,也可能是 cuDNN C 函數做了不兼容修改。所以還是老老實實的安裝 cuDNN7 版本實在。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM