In a country popular for train travel, you have planned some train travelling one year in advance. The days of the year that you will travel is given as an array days
. Each day is an integer from 1
to 365
.
Train tickets are sold in 3 different ways:
- a 1-day pass is sold for
costs[0]
dollars; - a 7-day pass is sold for
costs[1]
dollars; - a 30-day pass is sold for
costs[2]
dollars.
The passes allow that many days of consecutive travel. For example, if we get a 7-day pass on day 2, then we can travel for 7 days: day 2, 3, 4, 5, 6, 7, and 8.
Return the minimum number of dollars you need to travel every day in the given list of days
.
Example 1:
Input: days = [1,4,6,7,8,20], costs = [2,7,15]
Output: 11
Explanation:
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 1-day pass for costs[0] = $2, which covered day 1.
On day 3, you bought a 7-day pass for costs[1] = $7, which covered days 3, 4, ..., 9.
On day 20, you bought a 1-day pass for costs[0] = $2, which covered day 20.
In total you spent $11 and covered all the days of your travel.
Example 2:
Input: days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
Output: 17
Explanation:
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 30-day pass for costs[2] = $15 which covered days 1, 2, ..., 30.
On day 31, you bought a 1-day pass for costs[0] = $2 which covered day 31.
In total you spent $17 and covered all the days of your travel.
Note:
1 <= days.length <= 365
1 <= days[i] <= 365
days
is in strictly increasing order.costs.length == 3
1 <= costs[i] <= 1000
這道題給了兩個數組 days 和 costs,說是有人會在指定的天數進行旅游,由於某些城市的旅游景點比較多,短時間內可能玩不完,所有有些城市會推出 city pass,就是在特定的天數內,可以隨意玩。這里博主不得不提亞特蘭大的 city pass,總體感覺還是蠻划算的,可以玩的很開心。現在說是有三種 city pass,一天,一周,和一個月的通玩票,價格不同,現在問應該如何去買,才能保證在給定的天數都玩到,而且花費最小。當然實際情況中,肯定是月票價格大於周票大於日票,但是這道題里並沒有這個限制,cost 值之間並不存在大小關系。在實際情況中,如果需要連着幾天玩,肯定是用長期票划算,但這里不一定哦,所以一定要算出各種情況。像這種每天游玩的票可以有三種不同的選擇,即三種不同的狀態,又是一道求極值的問題,可以說基本上動態規划 Dynamic Programming 就是不二之選。這里可以使用一個一維的 dp 數組,其中 dp[i] 表示游玩到第 days[i] 天時所需要的最小花費。接下來就是最難的部分了,找出狀態轉移方程。對於第 days[i] 天的花費,可能有三種不同的情況,首先是第 days[i-1] 使用了一張日票,則當前天就有多種選擇,可以買日票,周票,或者月票。若之前使用買過了周票,則當前並不用再花錢了,所以只要一周內買過周票,當前就不用花錢了,但是當前的 dp 值還是需要被更新的,用買周票的前一天的 dp 值加上周票的價格來更新當前的 dp 值,所以顯而易見是需要兩個 for 循環的,外層的是遍歷游玩天數,內層是不停的通過用買周票或者月票的方式,來查找一種最省錢的方法。具體來看代碼,這里的 dp 數組大小為 n+1,為了防止減1溢出,並且都初始化為整型最大值,但是 dp[0] 要初始化為0。然后就是外層 for 循環了,i從1遍歷到n,由於每一天都可以買日票,所以都可以用前一天的 dp 值加上日票價格來更新當前的 dp 值。然后就是內層循環了,j從1遍歷到i,只要遍歷到的某天在當前天的7天之內,就可以用嘗試着替換成周票來更新當前的 dp 值,同理,若只要遍歷到的某天在當前天的 30 天之內,就可以用嘗試着替換成月票來更新當前的 dp 值,這樣更新下來,最優解就會存到 dp 數組種的最后一個位置上了,參見代碼如下:
解法一:
class Solution {
public:
int mincostTickets(vector<int>& days, vector<int>& costs) {
int n = days.size();
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 1; i <= n; ++i) {
dp[i] = min(dp[i], dp[i - 1] + costs[0]);
for (int j = 1; j <= i; ++j) {
if (days[j - 1] + 7 > days[i - 1]) {
dp[i] = min(dp[i], dp[j - 1] + costs[1]);
}
if (days[j - 1] + 30 > days[i - 1]) {
dp[i] = min(dp[i], dp[j - 1] + costs[2]);
}
}
}
return dp.back();
}
};
下面來看一種更簡潔的寫法,由於規定了游玩的天數是在一年內,實際上可以將 dp 數組的大小確定為 366,然后只要更新好這個 dp 數組就行了。同時,由於並不是每天都要玩,所以需要知道到底是哪些天需要玩,比較簡單的方法就是把游玩的天數放到一個 TreeSet 中,以便於快速的查詢。用 for 循環遍歷1到 365 天,用前一天的 dp 值來更新當前天,因為就算今天沒有玩,之前花了的錢也都已經花了,還是要記在那,以便年底算總賬。若當前天游玩了,即在 TreeSet 里面,則考慮是否可以優化當前的花費,通過三種途徑,今天買日票,一周前買周票,或者一個月錢買月票,看哪種花費最低,用來更新當前的 dp 值,參見代碼如下:
解法二:
class Solution {
public:
int mincostTickets(vector<int>& days, vector<int>& costs) {
unordered_set<int> st(days.begin(), days.end());
vector<int> dp(366);
for (int i = 1; i <= 365; ++i) {
dp[i] = dp[i - 1];
if (st.count(i)) {
dp[i] = min({dp[i - 1] + costs[0], dp[max(0, i - 7)] + costs[1], dp[max(0, i - 30)] + costs[2]});
}
}
return dp.back();
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/983
類似題目:
參考資料:
https://leetcode.com/problems/minimum-cost-for-tickets/
https://leetcode.com/problems/minimum-cost-for-tickets/discuss/226659/Two-DP-solutions-with-pictures