目錄
Pytorch_模型轉Caffe(三)pytorch轉caffemodel
- 模型轉換基於GitHub上xxradon的代碼進行優化,在此對作者表示感謝。GitHub地址:https://github.com/xxradon/PytorchToCaffe
- 本文基於AlexNet網絡對MNIST手寫字體分類生成的模型*.pth進行轉換
1. Pytorch下生成模型
- 調用
torchvision.models.alexnet
下的alexnet
網絡 - 修改網絡輸入層數 1 ,輸出類別數量 10
classifier
下的dropout
位置需要調整
- 通過一下代碼訓練手寫數字識別,最終生成模型
mnist_alexnet_model.pth
(這里保存了整個網絡和權重)
import time
import torch
from torch import nn, optim
import torchvision
import pytorch_deep as pyd
from torchvision.models.alexnet import alexnet
net = alexnet(False)
device = torch.device('cuda' if torch.cuda.is_available() else'cpu')
def load_data_fashion_mnist(batch_size = 256,resize=None,num_workers = 0):
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size=resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root='./MNIST', train=True, download=True,
transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root='./MNIST', train=False, download=True,
transform=transform)
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_iter,test_iter
batch_size = 128
# 如出現“out of memory”的報錯信息,可減⼩batch_size或resize
train_iter, test_iter = load_data_fashion_mnist(batch_size,resize=224)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
pyd.train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)
2. pth轉換成caffemodel和prototxt
git clone
下載GitHub源碼,進入example
下的Alexnet實例- 主要用到以下兩個文件,一個是加載網絡模型,一個是進行prototxt和caffemodel的轉換
- 先看
alexnet_pytorch_to_caffe.py
import sys
sys.path.insert(0,'.')
import torch
from torch.autograd import Variable
from torchvision.models.alexnet import alexnet
import pytorch_to_caffe_alexNet
import cv2
if __name__=='__main__':
name='alexnet'
pth_path = '***/mnist_alexnet_model.pth'
net = torch.load(pth_path)
net.eval()
input=Variable(torch.FloatTensor(torch.ones([1,1,224,224])))
input = input.cuda()
pytorch_to_caffe_alexNet.save_prototxt('{}.prototxt'.format(name))
pytorch_to_caffe_alexNet.save_caffemodel('{}.caffemodel'.format(name))
- 如果直接運行發現會報錯,我這里的錯誤出現在
dropout
層轉化的位置,修改其bottom
和top
傳參 - 修改完
dropout
,運行正常,能夠生產caffemodel和prototxt,但prototxt網絡結構有問題,還是前后層銜接不對 - 參照原版deploy.prototxt進行layer的修改,最終輸出了正確的結果
3. pytorch_to_caffe_alexNet.py
剖析
- 該文件就是對pth文件進行解析,獲得layer的名稱和每層的權重偏差,並以caffe的格式進行存儲
- 修改了pytorch Function中的函數,讓其在前向傳播的時候自動將該層的參數保存到caffe
- 很多層的前后銜接不對,都需要強制進行修改
- 下面是修改的部分函數
def _dropout(raw,input,p=0.5, training=False, inplace=False):
x=raw(input,p, training, False)
layer_name=log.add_layer(name='dropout')
log.add_blobs([x],name='dropout_blob')
bottom_top_name = 'fc_blob' + layer_name[-1]
layer=caffe_net.Layer_param(name=layer_name,type='Dropout',
bottom=[bottom_top_name],top=[bottom_top_name])
layer.param.dropout_param.dropout_ratio = p
log.cnet.add_layer(layer)
return x
def _linear(raw,input, weight, bias=None):
x=raw(input,weight,bias)
layer_name=log.add_layer(name='fc')
top_blobs=log.add_blobs([x],name='fc_blob')
bottom_name = 'ave_pool_blob1' if top_blobs[-1][-1] =='1' else 'fc_blob'+str(int(top_blobs[-1][-1])-1)
layer=caffe_net.Layer_param(name=layer_name,type='InnerProduct',
bottom=[bottom_name],top=top_blobs)
layer.fc_param(x.size()[1],has_bias=bias is not None)
if bias is not None:
layer.add_data(weight.cpu().data.numpy(),bias.cpu().data.numpy())
else:
layer.add_data(weight.cpu().data.numpy())
log.cnet.add_layer(layer)
return x
4. 用轉換后的模型進行推理
- 在caffe 下進行測試 test_alexnet.sh
#!/bin/bash
set -e
./build/examples/cpp_classification/classification.bin \
/home/****/alexnet.prototxt \
/home/****/alexnet.caffemodel \
examples/mnist/mnist_mean.binaryproto \
examples/mnist/mnist_label.txt \
data/mnist/1.png;
目前推理結果不太准,但整個過程都已經跑通
5. prototxt
注意問題
-
推理過程發現每次的結果都不一樣,發現prototxt中每個卷積層下都有初始化權重的偏差,將其統統刪除
-
池化層下的
ceil_mode: false
也是多余項,刪除即可
至此已完成Pytorch到caffemodle的轉換
這只是初步嘗試通過,接下來要進行YOLOv4的轉換,應該會遇到更多的問題,加油!