接上節繼續,通常在做數據分析時需要指定時間范圍,比如:"每天凌晨1點統計前一天的訂單量" 或者 "每個整點統計前24小時的總發貨量"。這個統計時間段,就稱為統計窗口。Flink中支持多種Window統計,今天介紹二種常見的窗口:TumbingWindow及SlidingWindow。

如上圖,最下面是時間線,假設每1分鍾上游系統產生1條數據,分別對應序號1~7。如果每隔1分鍾,需要統計前3分鍾的數據,這種就是SlidingWindow。如果每2分鍾的數據做1次統計(注:2次相鄰的統計之間,沒有數據重疊部分),這種就是TumbingWindow。
在開始寫示例代碼前,再來說一個概念:時間語義。
通常每條業務數據都有自己的"業務發生時間"(比如:訂單數據有“下單時間”,IM聊天消息有"消息發送時間"),由於網絡延時等原因,數據到達flink時,flink有一個"數據接收時間"。那么在數據分析時,前面提到的各種窗口統計應該以哪個時間為依據呢?這就是時間語義。 flink允許開發者自行指定用哪個時間來做為處理依據,大多數業務系統通常會采用業務發生時間(即:所謂的事件時間)。
下面還是以WordCount這個經典示例來演示一番:(flink版本:1.11.2)
1、准備數據源
仍以kafka作為數據源,准備向其發送以下格式的數據:
{
"event_datetime": "2020-12-19 14:10:21.209",
"event_timestamp": "1608358221209",
"word": "hello"
}
注意:這里event_timestamp相當於業務時間(即:事件時間)對應的時間戳,word為每次要統計的單詞。event_datetime不參與處理,只是為了肉眼看日志更方便。
寫一個java類,不停發送數據:(每10秒生成一條隨機數據,1分鍾共6條)
package com.cnblogs.yjmyzz.flink.demo;
import com.google.gson.Gson;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.text.SimpleDateFormat;
import java.util.*;
/**
* @author 菩提樹下的楊過
*/
public class KafkaProducerSample {
private static String topic = "test3";
private static Gson gson = new Gson();
private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
public static void main(String[] args) throws InterruptedException {
Properties p = new Properties();
p.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
p.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
p.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(p);
String[] words = new String[]{"hello", "world", "flink"};
Random rnd = new Random();
try {
while (true) {
Map<String, String> map = new HashMap<>();
map.put("word", words[rnd.nextInt(words.length)]);
long timestamp = System.currentTimeMillis();
map.put("event_timestamp", timestamp + "");
map.put("event_datetime", sdf.format(new Date(timestamp)));
String msg = gson.toJson(map);
ProducerRecord<String, String> record = new ProducerRecord<String, String>(topic, msg);
kafkaProducer.send(record);
System.out.println(msg);
Thread.sleep(10000);
}
} finally {
kafkaProducer.close();
}
}
}
2. TumbingWindow示例
package com.cnblogs.yjmyzz.flink.demo;
import com.google.gson.Gson;
import com.google.gson.reflect.TypeToken;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SerializationSchema;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010;
import org.apache.flink.util.Collector;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Map;
import java.util.Properties;
/**
* @author 菩提樹下的楊過(http : / / yjmyzz.cnblogs.com /)
*/
public class KafkaStreamTumblingWindowCount {
private final static Gson gson = new Gson();
private final static String SOURCE_TOPIC = "test3";
private final static String SINK_TOPIC = "test4";
private final static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm");
public static void main(String[] args) throws Exception {
// 1 設置環境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//指定使用eventTime作為時間標准
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 2. 定義數據
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("zookeeper.connect", "localhost:2181");
props.put("group.id", "test-read-group-2");
props.put("deserializer.encoding", "GB2312");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset", "latest");
DataStreamSource<String> text = env.addSource(new FlinkKafkaConsumer011<>(
SOURCE_TOPIC,
new SimpleStringSchema(),
props));
// 3. 處理邏輯
DataStream<Tuple3<String, Integer, String>> counts = text.assignTimestampsAndWatermarks(new WatermarkStrategy<String>() {
@Override
public WatermarkGenerator<String> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<String>() {
private long maxTimestamp;
private long delay = 100;
@Override
public void onEvent(String s, long l, WatermarkOutput watermarkOutput) {
Map<String, String> map = gson.fromJson(s, new TypeToken<Map<String, String>>() {
}.getType());
String timestamp = map.getOrDefault("event_timestamp", l + "");
maxTimestamp = Math.max(maxTimestamp, Long.parseLong(timestamp));
}
@Override
public void onPeriodicEmit(WatermarkOutput watermarkOutput) {
watermarkOutput.emitWatermark(new Watermark(maxTimestamp - delay));
}
};
}
}).flatMap(new FlatMapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public void flatMap(String value, Collector<Tuple3<String, Integer, String>> out) throws Exception {
//解析message中的json
Map<String, String> map = gson.fromJson(value, new TypeToken<Map<String, String>>() {
}.getType());
String word = map.getOrDefault("word", "");
String eventTimestamp = map.getOrDefault("event_timestamp", "0");
//獲取每個統計窗口的時間(用於顯示)
String windowTime = sdf.format(new Date(TimeWindow.getWindowStartWithOffset(Long.parseLong(eventTimestamp), 0, 60 * 1000)));
if (word != null && word.trim().length() > 0) {
//收集(類似:map-reduce思路)
out.collect(new Tuple3<>(word.trim(), 1, windowTime));
}
}
})
//按Tuple3里的第0項,即:word分組
.keyBy(value -> value.f0)
//按每1分整點開固定窗口計算
.timeWindow(Time.minutes(1))
//然后對Tuple3里的第1項求合
.sum(1);
// 4. 打印結果
counts.addSink(new FlinkKafkaProducer010<>("localhost:9092", SINK_TOPIC,
(SerializationSchema<Tuple3<String, Integer, String>>) element -> (element.f2 + " (" + element.f0 + "," + element.f1 + ")").getBytes()));
counts.print();
// execute program
env.execute("Kafka Streaming WordCount");
}
}
代碼看着一大堆,但是並不復雜,解釋 一下:
31-34 行是一些常量定義 ,從test3這個topic拿數據,處理好的結果,發送到test4這個topic
42行指定時間語義:使用事件時間做為依據。但是這還不夠,不是空口白話,說用“事件時間”就用“事件時間”,flink怎么知道哪個字段代表事件時間? 62-77行,這里給出了細節,解析kafka消息中的json體,然后把event_timestamp提取出來,做為時間依據。另外65行,還指定了允許數據延時100ms(這個可以先不管,后面學習watermark時,再詳細解釋 )
89-90行,為了讓wordCount的統計結果更友好,本次窗口對應的起始時間,使用靜態方法TimeWindow.getWindowStartWithOffset計算后,直接放到結果里了。
102行, timeWindow(Time.munites(1)) 這里指定了使用tumblingWindow,每次統計1分鍾的數據。(注:這里的1分鍾是從0秒開始,到59秒結束,即類似: 2020-12-12 14:00:00.000 ~ 2020-12-12 14:00:59.999)
運行結果:
下面是數據源的kafka消息日志(截取了部分)
...
{"event_datetime":"2020-12-19 14:32:36.873","event_timestamp":"1608359556873","word":"hello"}
{"event_datetime":"2020-12-19 14:32:46.874","event_timestamp":"1608359566874","word":"world"}
{"event_datetime":"2020-12-19 14:32:56.874","event_timestamp":"1608359576874","word":"hello"}
{"event_datetime":"2020-12-19 14:33:06.875","event_timestamp":"1608359586875","word":"hello"}
{"event_datetime":"2020-12-19 14:33:16.876","event_timestamp":"1608359596876","word":"world"}
{"event_datetime":"2020-12-19 14:33:26.877","event_timestamp":"1608359606877","word":"hello"}
{"event_datetime":"2020-12-19 14:33:36.878","event_timestamp":"1608359616878","word":"world"}
{"event_datetime":"2020-12-19 14:33:46.879","event_timestamp":"1608359626879","word":"flink"}
{"event_datetime":"2020-12-19 14:33:56.879","event_timestamp":"1608359636879","word":"hello"}
{"event_datetime":"2020-12-19 14:34:06.880","event_timestamp":"1608359646880","word":"world"}
{"event_datetime":"2020-12-19 14:34:16.881","event_timestamp":"1608359656881","word":"world"}
{"event_datetime":"2020-12-19 14:34:26.883","event_timestamp":"1608359666883","word":"hello"}
{"event_datetime":"2020-12-19 14:34:36.883","event_timestamp":"1608359676883","word":"flink"}
{"event_datetime":"2020-12-19 14:34:46.885","event_timestamp":"1608359686885","word":"flink"}
{"event_datetime":"2020-12-19 14:34:56.885","event_timestamp":"1608359696885","word":"world"}
{"event_datetime":"2020-12-19 14:35:06.885","event_timestamp":"1608359706885","word":"flink"}
...
flink的處理結果:
... 3> (world,2,2020-12-19 14:33) 4> (flink,1,2020-12-19 14:33) 2> (hello,3,2020-12-19 14:33) 3> (world,3,2020-12-19 14:34) 2> (hello,1,2020-12-19 14:34) 4> (flink,2,2020-12-19 14:34) ...
3.SlidingWindow示例
package com.cnblogs.yjmyzz.flink.demo;
import com.google.gson.Gson;
import com.google.gson.reflect.TypeToken;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SerializationSchema;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010;
import org.apache.flink.util.Collector;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Map;
import java.util.Properties;
/**
* @author 菩提樹下的楊過(http : / / yjmyzz.cnblogs.com /)
*/
public class KafkaStreamSlidingWindowCount {
private final static Gson gson = new Gson();
private final static String SOURCE_TOPIC = "test3";
private final static String SINK_TOPIC = "test4";
private final static SimpleDateFormat sdf1 = new SimpleDateFormat("yyyy-MM-dd HH:mm");
private final static SimpleDateFormat sdf2 = new SimpleDateFormat("HH:mm");
public static void main(String[] args) throws Exception {
// 1 設置環境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//指定使用eventTime作為時間標准
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 2. 定義數據
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("zookeeper.connect", "localhost:2181");
props.put("group.id", "test-read-group-1");
props.put("deserializer.encoding", "GB2312");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset", "latest");
DataStreamSource<String> text = env.addSource(new FlinkKafkaConsumer011<>(
SOURCE_TOPIC,
new SimpleStringSchema(),
props));
// 3. 處理邏輯
DataStream<Tuple3<String, Integer, String>> counts = text.assignTimestampsAndWatermarks(new WatermarkStrategy<String>() {
@Override
public WatermarkGenerator<String> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<String>() {
private long maxTimestamp;
private long delay = 1000;
@Override
public void onEvent(String s, long l, WatermarkOutput watermarkOutput) {
Map<String, String> map = gson.fromJson(s, new TypeToken<Map<String, String>>() {
}.getType());
String timestamp = map.getOrDefault("event_timestamp", l + "");
maxTimestamp = Math.max(maxTimestamp, Long.parseLong(timestamp));
}
@Override
public void onPeriodicEmit(WatermarkOutput watermarkOutput) {
watermarkOutput.emitWatermark(new Watermark(maxTimestamp - delay));
}
};
}
}).flatMap(new FlatMapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public void flatMap(String value, Collector<Tuple3<String, Integer, String>> out) throws Exception {
//解析message中的json
Map<String, String> map = gson.fromJson(value, new TypeToken<Map<String, String>>() {
}.getType());
String eventTimestamp = map.getOrDefault("event_timestamp", "0");
String windowTimeStart = sdf1.format(new Date(TimeWindow.getWindowStartWithOffset(Long.parseLong(eventTimestamp), 2 * 60 * 1000, 1 * 60 * 1000)));
String windowTimeEnd = sdf2.format(new Date(1 * 60 * 1000 + TimeWindow.getWindowStartWithOffset(Long.parseLong(eventTimestamp), 2 * 60 * 1000, 1 * 60 * 1000)));
String word = map.getOrDefault("word", "");
if (word != null && word.trim().length() > 0) {
out.collect(new Tuple3<>(word.trim(), 1, windowTimeStart + " ~ " + windowTimeEnd));
}
}
})
//按Tuple3里的第0項,即:word分組
.keyBy(value -> value.f0)
//每1分鍾算1次,每次算過去2分鍾內的數據
.timeWindow(Time.minutes(2), Time.minutes(1))
//然后對Tuple3里的第1項求合
.sum(1);
// 4. 打印結果
counts.addSink(new FlinkKafkaProducer010<>("localhost:9092", SINK_TOPIC,
(SerializationSchema<Tuple3<String, Integer, String>>) element -> (element.f2 + " (" + element.f0 + "," + element.f1 + ")").getBytes()));
counts.print();
// execute program
env.execute("Kafka Streaming WordCount");
}
}
與TumbingWindow最大的區別在於105行,除了指定窗口的size,還指定了slide值,有興趣的同學可以研究下這個方法:
public WindowedStream<T, KEY, TimeWindow> timeWindow(Time size, Time slide) {
if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) {
return window(SlidingProcessingTimeWindows.of(size, slide));
} else {
return window(SlidingEventTimeWindows.of(size, slide));
}
}
輸出結果:
發送到kafka的數據源片段:
...
{"event_datetime":"2020-12-19 14:32:36.873","event_timestamp":"1608359556873","word":"hello"}
{"event_datetime":"2020-12-19 14:32:46.874","event_timestamp":"1608359566874","word":"world"}
{"event_datetime":"2020-12-19 14:32:56.874","event_timestamp":"1608359576874","word":"hello"}
{"event_datetime":"2020-12-19 14:33:06.875","event_timestamp":"1608359586875","word":"hello"}
{"event_datetime":"2020-12-19 14:33:16.876","event_timestamp":"1608359596876","word":"world"}
{"event_datetime":"2020-12-19 14:33:26.877","event_timestamp":"1608359606877","word":"hello"}
{"event_datetime":"2020-12-19 14:33:36.878","event_timestamp":"1608359616878","word":"world"}
{"event_datetime":"2020-12-19 14:33:46.879","event_timestamp":"1608359626879","word":"flink"}
{"event_datetime":"2020-12-19 14:33:56.879","event_timestamp":"1608359636879","word":"hello"}
{"event_datetime":"2020-12-19 14:34:06.880","event_timestamp":"1608359646880","word":"world"}
{"event_datetime":"2020-12-19 14:34:16.881","event_timestamp":"1608359656881","word":"world"}
{"event_datetime":"2020-12-19 14:34:26.883","event_timestamp":"1608359666883","word":"hello"}
{"event_datetime":"2020-12-19 14:34:36.883","event_timestamp":"1608359676883","word":"flink"}
{"event_datetime":"2020-12-19 14:34:46.885","event_timestamp":"1608359686885","word":"flink"}
{"event_datetime":"2020-12-19 14:34:56.885","event_timestamp":"1608359696885","word":"world"}
{"event_datetime":"2020-12-19 14:35:06.885","event_timestamp":"1608359706885","word":"flink"}
...
處理后的結果:
... 3> (world,2,2020-12-19 14:33) 4> (flink,1,2020-12-19 14:33) 2> (hello,3,2020-12-19 14:33) 3> (world,3,2020-12-19 14:34) 2> (hello,1,2020-12-19 14:34) 4> (flink,2,2020-12-19 14:34) ...
