BackGround
- GAN存在生成同時具有全局(形狀)和局部(紋理)真實性圖像的難題
- 在現階段的GAN中,Discriminator僅作為一個分類器根據圖像中最具有區分性的差別來更新Generator
- 由於Generator在不斷更新,Discriminator工作在一個不穩定的環境中,並傾向於忘卻之前學到的特征(在訓練的初始階段由形狀主導判別工作,后期由紋理主導判別工作,但形狀可能出現差錯)
-
因此Discriminator不容易同時從全局和局部判別圖像
Motivation
- 本文將Discriminator改為U-Net結構,Encoder對輸入圖像進行分類,Decoder對圖像像素進行判別
-
更強大的Discriminator能提高Generator騙過判別器的難度,從而獲得質量更高的圖像
Model
此處僅截取了256的unconditional網絡結構,128及conditional請移步原文
源碼中有提到論文中關於網絡結構的敘述有誤,請結合源碼一並食用
Baseline:BIGGAN[1]
Technique
- CutMix[2]
- Self-modulation[3]
conclusion
在BIGGAN的基礎上實現了具有U-Net結構的Discriminator,並且借助CutMix技術和consistency regularization loss進行訓練,強大的Discriminator迫使Generator提升能力,從而獲得更高質量的圖像。
Reference
[1] Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large Scale GAN Training for High Fidelity Natural Image Synthesis." ArXiv:1809.11096 [Cs, Stat], February 25, 2019. http://arxiv.org/abs/1809.11096.
[2] Yun, Sangdoo, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. "CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features," 6023–32, 2019. https://openaccess.thecvf.com/content_ICCV_2019/html/Yun_CutMix_Regularization_Strategy_to_Train_Strong_Classifiers_With_Localizable_Features_ICCV_2019_paper.html.
[3] Chen, Ting, Mario Lucic, Neil Houlsby, and Sylvain Gelly. "On Self Modulation for Generative Adversarial Networks." ArXiv:1810.01365 [Cs, Stat], May 2, 2019. http://arxiv.org/abs/1810.01365.