U-Net GAN: A U-Net Based Discriminator for Generative Adversarial Networks


BackGround

  1. GAN存在生成同时具有全局(形状)和局部(纹理)真实性图像的难题
  2. 在现阶段的GAN中,Discriminator仅作为一个分类器根据图像中最具有区分性的差别来更新Generator
  3. 由于Generator在不断更新,Discriminator工作在一个不稳定的环境中,并倾向于忘却之前学到的特征(在训练的初始阶段由形状主导判别工作,后期由纹理主导判别工作,但形状可能出现差错)
  4. 因此Discriminator不容易同时从全局和局部判别图像

     

Motivation

  1. 本文将Discriminator改为U-Net结构,Encoder对输入图像进行分类,Decoder对图像像素进行判别
  2. 更强大的Discriminator能提高Generator骗过判别器的难度,从而获得质量更高的图像

     

Model

此处仅截取了256的unconditional网络结构,128及conditional请移步原文

源码中有提到论文中关于网络结构的叙述有误,请结合源码一并食用

Baseline:BIGGAN[1]

 

Technique

  1. CutMix[2]
  2. Self-modulation[3]

 

conclusion

在BIGGAN的基础上实现了具有U-Net结构的Discriminator,并且借助CutMix技术和consistency regularization loss进行训练,强大的Discriminator迫使Generator提升能力,从而获得更高质量的图像。

 

Reference

[1] Brock, Andrew, Jeff Donahue, and Karen Simonyan. "Large Scale GAN Training for High Fidelity Natural Image Synthesis." ArXiv:1809.11096 [Cs, Stat], February 25, 2019. http://arxiv.org/abs/1809.11096.

[2] Yun, Sangdoo, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. "CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features," 6023–32, 2019. https://openaccess.thecvf.com/content_ICCV_2019/html/Yun_CutMix_Regularization_Strategy_to_Train_Strong_Classifiers_With_Localizable_Features_ICCV_2019_paper.html.

[3] Chen, Ting, Mario Lucic, Neil Houlsby, and Sylvain Gelly. "On Self Modulation for Generative Adversarial Networks." ArXiv:1810.01365 [Cs, Stat], May 2, 2019. http://arxiv.org/abs/1810.01365.


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM