神經機器翻譯(NMT)開源工具


自然語言處理N天-使用Pytorch實現Transformer

https://www.jianshu.com/p/e05ec4bdc60b

https://www.jianshu.com/p/4e94690ba8e3

https://www.jianshu.com/p/2eb21de7fd5f

PaddlePaddle實戰 | 千行代碼搞定Transformer

Github 上 Star 過千的 NLP 相關項目

 

 https://opennmt.net/OpenNMT-py/main.html#installation

 

AllenNLP 使用教程

 

其中的一篇:

https://www.manning.com/books/real-world-natural-language-processing

 

 

 

 

 

 

博客地址:http://blog.csdn.net/wangxinginnlp/article/details/52944432

 

 

工具名稱:T2T: Tensor2Tensor Transformers

地址:https://github.com/tensorflow/tensor2tensor

語言:Python/Tensorflow

簡介:★★★★★ 五顆星

https://research.googleblog.com/2017/06/accelerating-deep-learning-research.html

 

 

工具名稱:dl4mt

地址:https://github.com/nyu-dl/dl4mt-tutorial/tree/master/session2

語言:Python/Theano

簡介:

Attention-based encoder-decoder model for machine translation.  

New York University Kyunghyun Cho博士組開發。

 

工具名稱:blocks

地址:https://github.com/mila-udem/blocks

語言:Python/Theano

簡介:

Blocks is a framework that helps you build neural network models on top of Theano. 

Université de Montréal LISA Lab(實驗室主任Yoshua Bengio,實驗室現在更名為MILA Lab,主頁:https://mila.umontreal.ca/en/)開發,是之前GroundHog(https://github.com/lisa-groundhog/GroundHog)的升級替代版。

 

 

工具名稱:EUREKA-MangoNMT

地址:https://github.com/jiajunzhangnlp/EUREKA-MangoNMT

語言:C++ 

簡介:A C++ toolkit for neural machine translation for CPU. 

中科院自動化所語音語言技術研究組張家俊博士(http://www.nlpr.ia.ac.cn/cip/jjzhang.htm)開發。

 

工具名稱:Nematus 

地址:https://github.com/EdinburghNLP/nematus

語言:Python/Theano

簡介:愛丁堡大學發布的NMT工具

 

 

工具名稱:AmuNMT

地址:https://github.com/emjotde/amunmt

語言:C++ 

簡介:

A C++ inference engine for Neural Machine Translation (NMT) models trained with Theano-based scripts from Nematus (https://github.com/rsennrich/nematus) or DL4MT (https://github.com/nyu-dl/dl4mt-tutorial).

Moses Machine Translation CIC公司Hieu Hoang博士(http://statmt.org/~s0565741/)等人開發。

 

 

工具名稱:Zoph_RNN

地址:https://github.com/isi-nlp/Zoph_RNN

語言:C++

簡介:

A C++/CUDA toolkit for training sequence and sequence-to-sequence models across multiple GPUs.

USC Information Sciences Institute開發。

 

 

工具名稱:sequence-to-sequence mdoels in tensorflow

地址:https://www.tensorflow.org/versions/r0.11/tutorials/seq2seq/index.html

語言:TensorFlow/Python

簡介:Sequence-to-Sequence Models

 

 

工具名稱:nmt_stanford_nlp

地址:http://nlp.stanford.edu/projects/nmt/

語言:Matlab

簡介:

Neural machine translation (NMT) at Stanford NLP group.

 

工具名稱:OpenNMT

地址:http://opennmt.net/

語言:Lua/Torch

簡介:

OpenNMT was originally developed by Yoon Kim and harvardnlp.

 

工具名稱:lamtram

地址:https://github.com/neubig/lamtram

語言:C++/DyNet

簡介:

lamtram: A toolkit for language and translation modeling using neural networks.

CMU Graham Neubig博士組開發。

 

工具名稱:Neural Monkey

地址:https://github.com/ufal/neuralmonkey

語言:TensorFlow/Python

簡介:The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification.

Institute of Formal and Applied Linguistics at Charles University 開發。

(WMT中NEURAL MT TRAINING TASK用的就是Neural Monkey  見:http://www.statmt.org/wmt17/)

 

 

工具名稱:Neural Machine Translation (seq2seq) Tutorial

地址:https://github.com/tensorflow/nmt

語言:python/Tensorflow

簡介:

Google Brain的Thang Luong博士等人出品

 

 

如果對上述工具感興趣,可以使用WMT16的雙語語料跑着玩玩,語料地址 http://www.statmt.org/wmt16/translation-task.html。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM