Python分類模型構建


分離訓練集測試集

from sklearn.model_selection import train_test_split

eg: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

 

標准化 (同模型使用方法相同)

from sklearn.preprocessing import StandardScaler

 

 

歸一化(同模型使用方法相同)

from sklearn.preprocessing import MinMaxScaler

 

(模型參數待補充)

1.邏輯回歸模型

Logistic函數圖像很像一個“S”型,所以該函數又叫 sigmoid 函數。

 

from sklearn.liner_model import LogisticRegression

LR = LogisticRegression()

clf = LR.fit(X, y)

prediction = clf.predict(X)

sklearn.linear_model.LogisticRegression

 

2.線性判別(LDA)——費希爾判別

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

LDA = LinearDiscriminantAnalysis()

clf = LDA.fit(X, y)

prediction = clf.predict(X)

sklearn.discriminant_analysis.LinearDiscriminantAnalysis

 

3.KNN

from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier().fit(X, y) _可以一步到位

prediction = clf.predict(X)

sklearn.neighbors.KNeighborsClassifier

 

4.貝葉斯

from sklearn.naive_bayes import GaussianNB

sklearn.naive_bayes.GaussianNB

 

5.決策樹

from sklearn.tree import DecisionTreeClassifier

sklearn.tree.DecisionTreeClassifier

 

6.支持向量機

from sklearn.svm import SVC

sklearn.svm.SVC

 

7.神經網絡

from sklearn.neural_network import MLPClassifier

sklearn.neural_network.MLPClassifier


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM