Python分类模型构建


分离训练集测试集

from sklearn.model_selection import train_test_split

eg: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

 

标准化 (同模型使用方法相同)

from sklearn.preprocessing import StandardScaler

 

 

归一化(同模型使用方法相同)

from sklearn.preprocessing import MinMaxScaler

 

(模型参数待补充)

1.逻辑回归模型

Logistic函数图像很像一个“S”型,所以该函数又叫 sigmoid 函数。

 

from sklearn.liner_model import LogisticRegression

LR = LogisticRegression()

clf = LR.fit(X, y)

prediction = clf.predict(X)

sklearn.linear_model.LogisticRegression

 

2.线性判别(LDA)——费希尔判别

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

LDA = LinearDiscriminantAnalysis()

clf = LDA.fit(X, y)

prediction = clf.predict(X)

sklearn.discriminant_analysis.LinearDiscriminantAnalysis

 

3.KNN

from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier().fit(X, y) _可以一步到位

prediction = clf.predict(X)

sklearn.neighbors.KNeighborsClassifier

 

4.贝叶斯

from sklearn.naive_bayes import GaussianNB

sklearn.naive_bayes.GaussianNB

 

5.决策树

from sklearn.tree import DecisionTreeClassifier

sklearn.tree.DecisionTreeClassifier

 

6.支持向量机

from sklearn.svm import SVC

sklearn.svm.SVC

 

7.神经网络

from sklearn.neural_network import MLPClassifier

sklearn.neural_network.MLPClassifier


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM