之前的圖像處理,都是再原圖上進行;而頻率域濾波,是在圖像的傅里葉譜上進行處理,最后再通過傅里葉逆變換得到處理后的圖像,則是因為圖片的傅里葉譜包含圖片的頻率信息,方便對其頻率進行處理。對於圖像,低頻信息表示圖像中灰度值緩慢變化的區域,如背景信息等;而高頻信息則表示灰度值迅速變化的區域,如邊緣處等細節信息。
在經過中心化后的傅立葉譜(幅度譜),其中心位置的幅度值最大,頻率最低,隨着離中心位置的距離增加頻率會越來越大,所以,中心化后的傅里葉譜,中心位置為低頻區域,四個角落處為高頻區域。頻率域濾波通常的處理步驟如下:
常用的濾波器有四種:低通濾波器,高通濾波器,帶通濾波器,帶阻濾波器
低通濾波器
低通濾波器,即保留傅里葉變換的低頻信息,過濾掉高頻信息,會使圖片變得更模糊。常用的低通濾波器包括理想低通濾波器,巴特沃斯低通濾波器,高斯低通濾波器。假設圖像傅里葉變換的高,寬為H、W,傅里葉譜的最大值在中心點位置(maxR, maxC), D(r, c)代表點(r, c)到中心點的距離:
那么三種濾波器可以表示為:
理想低通濾波器:
巴特沃斯低通濾波器:
高斯低通濾波器:
低通濾波器的使用代碼及結果如下:

#coding:utf-8 import cv2 import numpy as np def createLPFilter(shape, center, radius, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.power(c, 2.0) + np.power(r, 2.0) lpFilter_matrix = np.zeros(shape, np.float32) if lpType == 0: # 理想低通濾波器 lpFilter = np.copy(d) lpFilter[lpFilter < pow(radius, 2.0)] = 1 lpFilter[lpFilter >= pow(radius, 2.0)] = 0 elif lpType == 1: #巴特沃斯低通濾波器 lpFilter = 1.0 / (1 + np.power(np.sqrt(d)/radius, 2*n)) elif lpType == 2: # 高斯低通濾波器 lpFilter = np.exp(-d/(2*pow(radius, 2.0))) lpFilter_matrix[:, :, 0] = lpFilter lpFilter_matrix[:, :, 1] = lpFilter return lpFilter_matrix def stdFftImage(img_gray, rows, cols): fimg = np.copy(img_gray) fimg = fimg.astype(np.float32) #注意這里的類型轉換 # 1.圖像矩陣乘以(-1)^(r+c), 中心化 for r in range(rows): for c in range(cols): if (r+c) % 2: fimg[r][c] = -1 * img_gray[r][c] img_fft = fftImage(fimg, rows, cols) return img_fft def fftImage(img_gray, rows, cols): rPadded = cv2.getOptimalDFTSize(rows) cPadded = cv2.getOptimalDFTSize(cols) imgPadded = np.zeros((rPadded, cPadded), dtype=np.float32) imgPadded[:rows, :cols] = img_gray img_fft = cv2.dft(imgPadded, flags=cv2.DFT_COMPLEX_OUTPUT) return img_fft def graySpectrum(fft_img): real = np.power(fft_img[:, :, 0], 2.0) imaginary = np.power(fft_img[:, :, 1], 2.0) amplitude = np.sqrt(real+imaginary) spectrum = np.log(amplitude+1.0) spectrum = cv2.normalize(spectrum, 0, 1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) spectrum *= 255 return amplitude, spectrum def nothing(args): pass if __name__ == "__main__": img_file = r"C:\Users\silence_cho\Desktop\Messi.jpg" # img_file = r"D:\data\receipt_rotate.jpg" img_gray = cv2.imread(img_file, 0) # 1.快速傅里葉變換 rows, cols = img_gray.shape[:2] img_fft = stdFftImage(img_gray, rows, cols) amplitude, _ = graySpectrum(img_fft) minValue, maxValue, minLoc, maxLoc = cv2.minMaxLoc(amplitude) #中心化后頻譜的最大值在圖片中心位置處 cv2.namedWindow("tracks") max_radius = np.sqrt(pow(rows, 2) + pow(cols, 2))/2 cv2.createTrackbar("Radius", "tracks", 0, int(max_radius), nothing) cv2.createTrackbar("Filter type", "tracks", 0, 2, nothing) while True: # 2.構建低通濾波器 radius = cv2.getTrackbarPos("Radius", "tracks") lpType = cv2.getTrackbarPos("Filter type", "tracks") nrows, ncols = img_fft.shape[:2] # x, y = int(ncols/2), int(nrows/2) # 注意這里是坐標 # ilpFilter = createLPFilter(img_fft.shape, (x, y), radius, lpType) ilpFilter = createLPFilter(img_fft.shape, maxLoc, radius, lpType) # 3.低通濾波器濾波 img_filter = ilpFilter*img_fft _, gray_spectrum = graySpectrum(img_filter) #觀察濾波器的變化 # 4. 傅里葉反變換,並取實部進行裁剪, 並去中心化 img_ift = cv2.dft(img_filter, flags=cv2.DFT_INVERSE+cv2.DFT_REAL_OUTPUT+cv2.DFT_SCALE) ori_img = np.copy(img_ift[:rows, :cols]) for r in range(rows): for c in range(cols): if(r+c)%2: ori_img[r][c] = -1*ori_img[r][c] # 截斷高低值 if ori_img[r][c] < 0: ori_img[r][c] = 0 if ori_img[r][c] > 255: ori_img[r][c] = 255 # ori_img[ori_img < 0] = 0 # ori_img[ori_img > 255] = 255 ori_img = ori_img.astype(np.uint8) cv2.imshow("img_gray", img_gray) cv2.imshow("ori_img", ori_img) cv2.imshow("gray_spectrum", gray_spectrum) key = cv2.waitKey(1) if key == 27: break cv2.destroyAllWindows()
因為更多的高頻信息被過濾掉了,從上圖也可以發現,低通濾波器對圖片起到了模糊作用。
高通濾波器
理性高通濾波器:
巴特沃斯高通濾波器:
高斯高通濾波器:
高通濾波器的使用代碼及結果如下:

#coding:utf-8 import cv2 import numpy as np def createHPFilter(shape, center, radius, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.power(c, 2.0) + np.power(r, 2.0) lpFilter_matrix = np.zeros(shape, np.float32) if lpType == 0: # 理想高通濾波器 lpFilter = np.copy(d) lpFilter[lpFilter < pow(radius, 2.0)] = 0 lpFilter[lpFilter >= pow(radius, 2.0)] = 1 elif lpType == 1: #巴特沃斯高通濾波器 lpFilter = 1.0 - 1.0 / (1 + np.power(np.sqrt(d)/radius, 2*n)) elif lpType == 2: # 高斯高通濾波器 lpFilter = 1.0 - np.exp(-d/(2*pow(radius, 2.0))) lpFilter_matrix[:, :, 0] = lpFilter lpFilter_matrix[:, :, 1] = lpFilter return lpFilter_matrix def stdFftImage(img_gray, rows, cols): fimg = np.copy(img_gray) fimg = fimg.astype(np.float32) #注意這里的類型轉換 # 1.圖像矩陣乘以(-1)^(r+c), 中心化 for r in range(rows): for c in range(cols): if (r+c) % 2: fimg[r][c] = -1 * img_gray[r][c] img_fft = fftImage(fimg, rows, cols) return img_fft def fftImage(img_gray, rows, cols): rPadded = cv2.getOptimalDFTSize(rows) cPadded = cv2.getOptimalDFTSize(cols) imgPadded = np.zeros((rPadded, cPadded), dtype=np.float32) imgPadded[:rows, :cols] = img_gray img_fft = cv2.dft(imgPadded, flags=cv2.DFT_COMPLEX_OUTPUT) return img_fft def graySpectrum(fft_img): real = np.power(fft_img[:, :, 0], 2.0) imaginary = np.power(fft_img[:, :, 1], 2.0) amplitude = np.sqrt(real+imaginary) spectrum = np.log(amplitude+1.0) spectrum = cv2.normalize(spectrum, 0, 1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) spectrum *= 255 return amplitude, spectrum def nothing(args): pass if __name__ == "__main__": img_file = r"C:\Users\silence_cho\Desktop\Messi.jpg" # img_file = r"D:\data\receipt_rotate.jpg" img_gray = cv2.imread(img_file, 0) # 1.快速傅里葉變換 rows, cols = img_gray.shape[:2] img_fft = stdFftImage(img_gray, rows, cols) amplitude, _ = graySpectrum(img_fft) minValue, maxValue, minLoc, maxLoc = cv2.minMaxLoc(amplitude) # 中心化后頻譜的最大值在圖片中心位置處 cv2.namedWindow("tracks") max_radius = np.sqrt(pow(rows, 2) + pow(cols, 2)) cv2.createTrackbar("Radius", "tracks", 0, int(max_radius), nothing) cv2.createTrackbar("Filter type", "tracks", 0, 2, nothing) while True: # 2.構建高通濾波器 radius = cv2.getTrackbarPos("Radius", "tracks") lpType = cv2.getTrackbarPos("Filter type", "tracks") nrows, ncols = img_fft.shape[:2] # x, y = int(ncols / 2), int(nrows / 2) # 注意這里是坐標 # ilpFilter = createHPFilter(img_fft.shape, (x, y), radius, lpType) ilpFilter = createHPFilter(img_fft.shape, maxLoc, radius, lpType) # 3.高通濾波器濾波 img_filter = ilpFilter * img_fft _, gray_spectrum = graySpectrum(img_filter) # 觀察濾波器的變化 # 4. 傅里葉反變換,並取實部進行裁剪, 並去中心化 img_ift = cv2.dft(img_filter, flags=cv2.DFT_INVERSE + cv2.DFT_REAL_OUTPUT + cv2.DFT_SCALE) ori_img = np.copy(img_ift[:rows, :cols]) for r in range(rows): for c in range(cols): if (r + c) % 2: ori_img[r][c] = -1 * ori_img[r][c] # 截斷高低值 if ori_img[r][c] < 0: ori_img[r][c] = 0 if ori_img[r][c] > 255: ori_img[r][c] = 255 # ori_img[ori_img < 0] = 0 # ori_img[ori_img > 255] = 255 ori_img = ori_img.astype(np.uint8) cv2.imshow("img_gray", img_gray) cv2.imshow("ori_img", ori_img) cv2.imshow("gray_spectrum", gray_spectrum) key = cv2.waitKey(1) if key == 27: break cv2.destroyAllWindows()
因為高通濾波器過濾掉了低頻信息,從上圖發現,高通濾波器對圖片起到了銳化的作用,僅保留了圖片中物體邊緣信息。
帶通濾波器
帶通濾波器是只保留某一范圍區域的頻率帶,頻率信息過濾掉,能選擇性的圖片的部分信息。常用的帶通濾波器包括理想帶通濾波器,巴特沃斯帶通濾波器,高斯帶通濾波器。假設BW代表帶寬,D0代表帶寬的徑向中心,則三種帶通濾波器可以表示為:
理想帶通濾波器:
巴特沃斯帶通濾波器:
高斯帶通濾波器:
帶通濾波器的使用代碼及效果如下:

#coding:utf-8 import cv2 import numpy as np def createBPFilter(shape, center, bandCenter, bandWidth, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.sqrt(np.power(c, 2.0) + np.power(r, 2.0)) lpFilter_matrix = np.zeros(shape, np.float32) if lpType == 0: # 理想帶通濾波器 lpFilter = np.copy(d) lpFilter[:, :] = 1 lpFilter[d > (bandCenter+bandWidth/2)] = 0 lpFilter[d < (bandCenter-bandWidth/2)] = 0 elif lpType == 1: #巴特沃斯帶通濾波器 lpFilter = 1.0 - 1.0 / (1 + np.power(d*bandWidth/(d - pow(bandCenter,2)), 2*n)) elif lpType == 2: # 高斯帶通濾波器 lpFilter = np.exp(-pow((d-pow(bandCenter,2))/(d*bandWidth), 2)) lpFilter_matrix[:, :, 0] = lpFilter lpFilter_matrix[:, :, 1] = lpFilter return lpFilter_matrix def stdFftImage(img_gray, rows, cols): fimg = np.copy(img_gray) fimg = fimg.astype(np.float32) #注意這里的類型轉換 # 1.圖像矩陣乘以(-1)^(r+c), 中心化 for r in range(rows): for c in range(cols): if (r+c) % 2: fimg[r][c] = -1 * img_gray[r][c] img_fft = fftImage(fimg, rows, cols) return img_fft def fftImage(img_gray, rows, cols): rPadded = cv2.getOptimalDFTSize(rows) cPadded = cv2.getOptimalDFTSize(cols) imgPadded = np.zeros((rPadded, cPadded), dtype=np.float32) imgPadded[:rows, :cols] = img_gray img_fft = cv2.dft(imgPadded, flags=cv2.DFT_COMPLEX_OUTPUT) return img_fft def graySpectrum(fft_img): real = np.power(fft_img[:, :, 0], 2.0) imaginary = np.power(fft_img[:, :, 1], 2.0) amplitude = np.sqrt(real+imaginary) spectrum = np.log(amplitude+1.0) spectrum = cv2.normalize(spectrum, 0, 1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) spectrum *= 255 return amplitude, spectrum def nothing(args): pass if __name__ == "__main__": img_file = r"C:\Users\silence_cho\Desktop\Messi.jpg" # img_file = r"D:\data\receipt_rotate.jpg" img_gray = cv2.imread(img_file, 0) # 1.快速傅里葉變換 rows, cols = img_gray.shape[:2] img_fft = stdFftImage(img_gray, rows, cols) amplitude, _ = graySpectrum(img_fft) minValue, maxValue, minLoc, maxLoc = cv2.minMaxLoc(amplitude) # 中心化后頻譜的最大值在圖片中心位置處 cv2.namedWindow("tracks") max_radius = np.sqrt(pow(rows, 2) + pow(cols, 2)) cv2.createTrackbar("BandCenter", "tracks", 0, int(max_radius), nothing) cv2.createTrackbar("BandWidth", "tracks", 0, int(max_radius), nothing) cv2.createTrackbar("Filter type", "tracks", 0, 2, nothing) while True: # 2.構建帶通濾波器 bandCenter = cv2.getTrackbarPos("BandCenter", "tracks") bandWidth = cv2.getTrackbarPos("BandWidth", "tracks") lpType = cv2.getTrackbarPos("Filter type", "tracks") nrows, ncols = img_fft.shape[:2] # x, y = int(ncols / 2), int(nrows / 2) # 注意這里是坐標 # ilpFilter = createBPFilter(img_fft.shape, (x, y), bandCenter, bandWidth, lpType) ilpFilter = createBPFilter(img_fft.shape, maxLoc, bandCenter, bandWidth, lpType) # 3.帶通濾波器濾波 img_filter = ilpFilter * img_fft _, gray_spectrum = graySpectrum(img_filter) # 觀察濾波器的變化 # 4. 傅里葉反變換,並取實部進行裁剪, 並去中心化 img_ift = cv2.dft(img_filter, flags=cv2.DFT_INVERSE + cv2.DFT_REAL_OUTPUT + cv2.DFT_SCALE) ori_img = np.copy(img_ift[:rows, :cols]) for r in range(rows): for c in range(cols): if (r + c) % 2: ori_img[r][c] = -1 * ori_img[r][c] # 截斷高低值 if ori_img[r][c] < 0: ori_img[r][c] = 0 if ori_img[r][c] > 255: ori_img[r][c] = 255 # ori_img[ori_img < 0] = 0 # ori_img[ori_img > 255] = 255 ori_img = ori_img.astype(np.uint8) cv2.imshow("img_gray", img_gray) cv2.imshow("ori_img", ori_img) cv2.imshow("gray_spectrum", gray_spectrum) key = cv2.waitKey(1) if key == 27: break cv2.destroyAllWindows()
帶阻濾波器
與帶通濾波器相反,帶阻濾波器指過濾掉或者削弱指定范圍區域的頻率帶,常用的帶阻濾波器包括理想帶阻濾波器,巴特沃斯帶阻濾波器,高斯帶阻濾波器。三種帶阻濾波器表示如下:
理想帶阻濾波器:
巴特沃斯帶阻濾波器:
高斯帶阻濾波器:
帶阻濾波器使用代碼及效果如下:

#coding:utf-8 import cv2 import numpy as np def createBRFilter(shape, center, bandCenter, bandWidth, lpType=2, n=2): rows, cols = shape[:2] r, c = np.mgrid[0:rows:1, 0:cols:1] c -= center[0] r -= center[1] d = np.sqrt(np.power(c, 2.0) + np.power(r, 2.0)) lpFilter_matrix = np.zeros(shape, np.float32) if lpType == 0: # 理想帶阻濾波器 lpFilter = np.copy(d) lpFilter[:, :] = 0 lpFilter[d > (bandCenter+bandWidth/2)] = 1 lpFilter[d < (bandCenter-bandWidth/2)] = 1 elif lpType == 1: #巴特沃斯帶阻濾波器 lpFilter = 1.0 / (1 + np.power(d*bandWidth/(d - pow(bandCenter,2)), 2*n)) elif lpType == 2: # 高斯帶阻濾波器 lpFilter = 1 - np.exp(-pow((d-pow(bandCenter,2))/(d*bandWidth), 2)) lpFilter_matrix[:, :, 0] = lpFilter lpFilter_matrix[:, :, 1] = lpFilter return lpFilter_matrix def stdFftImage(img_gray, rows, cols): fimg = np.copy(img_gray) fimg = fimg.astype(np.float32) #注意這里的類型轉換 # 1.圖像矩陣乘以(-1)^(r+c), 中心化 for r in range(rows): for c in range(cols): if (r+c) % 2: fimg[r][c] = -1 * img_gray[r][c] img_fft = fftImage(fimg, rows, cols) return img_fft def fftImage(img_gray, rows, cols): rPadded = cv2.getOptimalDFTSize(rows) cPadded = cv2.getOptimalDFTSize(cols) imgPadded = np.zeros((rPadded, cPadded), dtype=np.float32) imgPadded[:rows, :cols] = img_gray img_fft = cv2.dft(imgPadded, flags=cv2.DFT_COMPLEX_OUTPUT) return img_fft def graySpectrum(fft_img): real = np.power(fft_img[:, :, 0], 2.0) imaginary = np.power(fft_img[:, :, 1], 2.0) amplitude = np.sqrt(real+imaginary) spectrum = np.log(amplitude+1.0) spectrum = cv2.normalize(spectrum, 0, 1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) spectrum *= 255 return amplitude, spectrum def nothing(args): pass if __name__ == "__main__": img_file = r"C:\Users\silence_cho\Desktop\Messi.jpg" # img_file = r"D:\data\receipt_rotate.jpg" img_gray = cv2.imread(img_file, 0) # 1.快速傅里葉變換 rows, cols = img_gray.shape[:2] img_fft = stdFftImage(img_gray, rows, cols) amplitude, _ = graySpectrum(img_fft) minValue, maxValue, minLoc, maxLoc = cv2.minMaxLoc(amplitude) # 中心化后頻譜的最大值在圖片中心位置處 cv2.namedWindow("tracks") max_radius = np.sqrt(pow(rows, 2) + pow(cols, 2)) cv2.createTrackbar("BandCenter", "tracks", 0, int(max_radius), nothing) cv2.createTrackbar("BandWidth", "tracks", 0, int(max_radius), nothing) cv2.createTrackbar("Filter type", "tracks", 0, 2, nothing) while True: # 2.構建帶阻濾波器 bandCenter = cv2.getTrackbarPos("BandCenter", "tracks") bandWidth = cv2.getTrackbarPos("BandWidth", "tracks") lpType = cv2.getTrackbarPos("Filter type", "tracks") nrows, ncols = img_fft.shape[:2] # x, y = int(ncols / 2), int(nrows / 2) # 注意這里是坐標 # ilpFilter = createBRFilter(img_fft.shape, (x, y), bandCenter, bandWidth, lpType) ilpFilter = createBRFilter(img_fft.shape, maxLoc, bandCenter, bandWidth, lpType) # 3.帶阻濾波器濾波 img_filter = ilpFilter * img_fft _, gray_spectrum = graySpectrum(img_filter) # 觀察濾波器的變化 # 4. 傅里葉反變換,並取實部進行裁剪, 並去中心化 img_ift = cv2.dft(img_filter, flags=cv2.DFT_INVERSE + cv2.DFT_REAL_OUTPUT + cv2.DFT_SCALE) ori_img = np.copy(img_ift[:rows, :cols]) for r in range(rows): for c in range(cols): if (r + c) % 2: ori_img[r][c] = -1 * ori_img[r][c] # 截斷高低值 if ori_img[r][c] < 0: ori_img[r][c] = 0 if ori_img[r][c] > 255: ori_img[r][c] = 255 # ori_img[ori_img < 0] = 0 # ori_img[ori_img > 255] = 255 ori_img = ori_img.astype(np.uint8) cv2.imshow("img_gray", img_gray) cv2.imshow("ori_img", ori_img) cv2.imshow("gray_spectrum", gray_spectrum) key = cv2.waitKey(1) if key == 27: break cv2.destroyAllWindows()