skywalking是什么?為什么要給你的應用加上skywalking?
在介紹skywalking之前,我們先來了解一個東西,那就是APM(Application Performance Management)系統。
一、什么是APM系統
APM (Application Performance Management) 即應用性能管理系統,是對企業系統即時監控以實現
對應用程序性能管理和故障管理的系統化的解決方案。應用性能管理,主要指對企業的關鍵業務應用進
行監測、優化,提高企業應用的可靠性和質量,保證用戶得到良好的服務,降低IT總擁有成本。
APM系統是可以幫助理解系統行為、用於分析性能問題的工具,以便發生故障的時候,能夠快速定位和
解決問題。
說白了就是隨着微服務的的興起,傳統的單體應用拆分為不同功能的小應用,用戶的一次請求會經過多個系統,不同服務之間的調用非常復雜,其中任何一個系統出錯都可能影響整個請求的處理結果。為了解決這個問題,Google 推出了一個分布式鏈路跟蹤系統 Dapper ,之后各個互聯網公司都參照Dapper 的思想推出了自己的分布式鏈路跟蹤系統,而這些系統就是分布式系統下的APM系統。
目前市面上的APM系統有很多,比如skywalking、pinpoint、zipkin等。其中
- Zipkin:由Twitter公司開源,開放源代碼分布式的跟蹤系統,用於收集服務的定時數據,以解決微服務架構中的延遲問題,包括:數據的收集、存儲、查找和展現。
- Pinpoint:一款對Java編寫的大規模分布式系統的APM工具,由韓國人開源的分布式跟蹤組件。
- Skywalking:國產的優秀APM組件,是一個對JAVA分布式應用程序集群的業務運行情況進行追蹤、告警和分析的系統。
二、什么是skywalking
SkyWalking是apache基金會下面的一個開源APM項目,為微服務架構和雲原生架構系統設計。它通過探針自動收集所需的標,並進行分布式追蹤。通過這些調用鏈路以及指標,Skywalking APM會感知應用間關系和服務間關系,並進行相應的指標統計。Skywalking支持鏈路追蹤和監控應用組件基本涵蓋主流框架和容器,如國產RPC Dubbo和motan等,國際化的spring boot,spring cloud。官方網站:http://skywalking.apache.org/
Skywalking的具有以下幾個特點:
- 多語言自動探針,Java,.NET Core和Node.JS。
- 多種監控手段,語言探針和service mesh。
- 輕量高效。不需要額外搭建大數據平台。
- 模塊化架構。UI、存儲、集群管理多種機制可選。
- 支持告警。
- 優秀的可視化效果。
Skywalking整體架構如下:

整體架構包含如下三個組成部分:
1. 探針(agent)負責進行數據的收集,包含了Tracing和Metrics的數據,agent會被安裝到服務所在的服務器上,以方便數據的獲取。
2. 可觀測性分析平台OAP(Observability Analysis Platform),接收探針發送的數據,並在內存中使用分析引擎(Analysis Core)進行數據的整合運算,然后將數據存儲到對應的存儲介質上,比如Elasticsearch、MySQL數據庫、H2數據庫等。同時OAP還使用查詢引擎(Query Core)提供HTTP查詢接口。
3. Skywalking提供單獨的UI進行數據的查看,此時UI會調用OAP提供的接口,獲取對應的數據然后進行展示。
三、搭建並使用
搭建其實很簡單,官方有提供搭建案例。
上文提到skywalking的后端數據存儲的介質可以是Elasticsearch、MySQL數據庫、H2數據庫等,我這里使用Elasticsearch作為數據存儲,而且為了便與擴展和收集其他應用日志,我將單獨搭建Elasticsearch。
3.1、搭建elasticsearch
為了增加es的擴展性,按角色功能分為master節點、data數據節點、client客戶端節點。其整體架構如下:
其中:
- Elasticsearch數據節點Pods被部署為一個有狀態集(StatefulSet)
- Elasticsearch master節點Pods被部署為一個Deployment
- Elasticsearch客戶端節點Pods是以Deployment的形式部署的,其內部服務將允許訪問R/W請求的數據節點
- Kibana部署為Deployment,其服務可在Kubernetes集群外部訪問
(1)先創建estatic的命名空間(es-ns.yaml):
apiVersion: v1
kind: Namespace
metadata:
name: elastic
執行kubectl apply -f es-ns.yaml
(2)部署es master
配置清單如下(es-master.yaml):
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: elasticsearch-master-config
labels:
app: elasticsearch
role: master
data:
elasticsearch.yml: |-
cluster.name: ${CLUSTER_NAME}
node.name: ${NODE_NAME}
discovery.seed_hosts: ${NODE_LIST}
cluster.initial_master_nodes: ${MASTER_NODES}
network.host: 0.0.0.0
node:
master: true
data: false
ingest: false
xpack.security.enabled: true
xpack.monitoring.collection.enabled: true
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: elasticsearch-master
labels:
app: elasticsearch
role: master
spec:
ports:
- port: 9300
name: transport
selector:
app: elasticsearch
role: master
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: elasticsearch-master
labels:
app: elasticsearch
role: master
spec:
replicas: 1
selector:
matchLabels:
app: elasticsearch
role: master
template:
metadata:
labels:
app: elasticsearch
role: master
spec:
initContainers:
- name: init-sysctl
image: busybox:1.27.2
command:
- sysctl
- -w
- vm.max_map_count=262144
securityContext:
privileged: true
containers:
- name: elasticsearch-master
image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
env:
- name: CLUSTER_NAME
value: elasticsearch
- name: NODE_NAME
value: elasticsearch-master
- name: NODE_LIST
value: elasticsearch-master,elasticsearch-data,elasticsearch-client
- name: MASTER_NODES
value: elasticsearch-master
- name: "ES_JAVA_OPTS"
value: "-Xms512m -Xmx512m"
ports:
- containerPort: 9300
name: transport
volumeMounts:
- name: config
mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
readOnly: true
subPath: elasticsearch.yml
- name: storage
mountPath: /data
volumes:
- name: config
configMap:
name: elasticsearch-master-config
- name: "storage"
emptyDir:
medium: ""
---
然后執行kubectl apply -f ``es-master.yaml創建配置清單,然后pod變為running狀態即為部署成功。
# kubectl get pod -n elastic
NAME READY STATUS RESTARTS AGE
elasticsearch-master-77d5d6c9db-xt5kq 1/1 Running 0 67s
(3)部署es data
配置清單如下(es-data.yaml):
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: elasticsearch-data-config
labels:
app: elasticsearch
role: data
data:
elasticsearch.yml: |-
cluster.name: ${CLUSTER_NAME}
node.name: ${NODE_NAME}
discovery.seed_hosts: ${NODE_LIST}
cluster.initial_master_nodes: ${MASTER_NODES}
network.host: 0.0.0.0
node:
master: false
data: true
ingest: false
xpack.security.enabled: true
xpack.monitoring.collection.enabled: true
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: elasticsearch-data
labels:
app: elasticsearch
role: data
spec:
ports:
- port: 9300
name: transport
selector:
app: elasticsearch
role: data
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
namespace: elastic
name: elasticsearch-data
labels:
app: elasticsearch
role: data
spec:
serviceName: "elasticsearch-data"
selector:
matchLabels:
app: elasticsearch
role: data
template:
metadata:
labels:
app: elasticsearch
role: data
spec:
initContainers:
- name: init-sysctl
image: busybox:1.27.2
command:
- sysctl
- -w
- vm.max_map_count=262144
securityContext:
privileged: true
containers:
- name: elasticsearch-data
image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
env:
- name: CLUSTER_NAME
value: elasticsearch
- name: NODE_NAME
value: elasticsearch-data
- name: NODE_LIST
value: elasticsearch-master,elasticsearch-data,elasticsearch-client
- name: MASTER_NODES
value: elasticsearch-master
- name: "ES_JAVA_OPTS"
value: "-Xms1024m -Xmx1024m"
ports:
- containerPort: 9300
name: transport
volumeMounts:
- name: config
mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
readOnly: true
subPath: elasticsearch.yml
- name: elasticsearch-data-persistent-storage
mountPath: /data/db
volumes:
- name: config
configMap:
name: elasticsearch-data-config
volumeClaimTemplates:
- metadata:
name: elasticsearch-data-persistent-storage
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: managed-nfs-storage
resources:
requests:
storage: 20Gi
---
執行kubectl apply -f es-data.yaml創建配置清單,其狀態變為running即為部署成功。
# kubectl get pod -n elastic
NAME READY STATUS RESTARTS AGE
elasticsearch-data-0 1/1 Running 0 4s
elasticsearch-master-77d5d6c9db-gklgd 1/1 Running 0 2m35s
elasticsearch-master-77d5d6c9db-gvhcb 1/1 Running 0 2m35s
elasticsearch-master-77d5d6c9db-pflz6 1/1 Running 0 2m35s
(4)部署es client
配置清單如下(es-client.yaml):
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: elasticsearch-client-config
labels:
app: elasticsearch
role: client
data:
elasticsearch.yml: |-
cluster.name: ${CLUSTER_NAME}
node.name: ${NODE_NAME}
discovery.seed_hosts: ${NODE_LIST}
cluster.initial_master_nodes: ${MASTER_NODES}
network.host: 0.0.0.0
node:
master: false
data: false
ingest: true
xpack.security.enabled: true
xpack.monitoring.collection.enabled: true
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: elasticsearch-client
labels:
app: elasticsearch
role: client
spec:
ports:
- port: 9200
name: client
- port: 9300
name: transport
selector:
app: elasticsearch
role: client
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: elasticsearch-client
labels:
app: elasticsearch
role: client
spec:
selector:
matchLabels:
app: elasticsearch
role: client
template:
metadata:
labels:
app: elasticsearch
role: client
spec:
initContainers:
- name: init-sysctl
image: busybox:1.27.2
command:
- sysctl
- -w
- vm.max_map_count=262144
securityContext:
privileged: true
containers:
- name: elasticsearch-client
image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
env:
- name: CLUSTER_NAME
value: elasticsearch
- name: NODE_NAME
value: elasticsearch-client
- name: NODE_LIST
value: elasticsearch-master,elasticsearch-data,elasticsearch-client
- name: MASTER_NODES
value: elasticsearch-master
- name: "ES_JAVA_OPTS"
value: "-Xms256m -Xmx256m"
ports:
- containerPort: 9200
name: client
- containerPort: 9300
name: transport
volumeMounts:
- name: config
mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
readOnly: true
subPath: elasticsearch.yml
- name: storage
mountPath: /data
volumes:
- name: config
configMap:
name: elasticsearch-client-config
- name: "storage"
emptyDir:
medium: ""
執行kubectl apply -f es-client.yaml創建配置清單,其狀態變為running即為部署成功。
# kubectl get pod -n elastic
NAME READY STATUS RESTARTS AGE
elasticsearch-client-f79cf4f7b-pbz9d 1/1 Running 0 5s
elasticsearch-data-0 1/1 Running 0 3m11s
elasticsearch-master-77d5d6c9db-gklgd 1/1 Running 0 5m42s
elasticsearch-master-77d5d6c9db-gvhcb 1/1 Running 0 5m42s
elasticsearch-master-77d5d6c9db-pflz6 1/1 Running 0 5m42s
(5)生成密碼
我們啟用了 xpack 安全模塊來保護我們的集群,所以我們需要一個初始化的密碼。我們可以執行如下所示的命令,在客戶端節點容器內運行 bin/elasticsearch-setup-passwords 命令來生成默認的用戶名和密碼:
# kubectl exec $(kubectl get pods -n elastic | grep elasticsearch-client | sed -n 1p | awk '{print $1}') \
-n elastic \
-- bin/elasticsearch-setup-passwords auto -b
Changed password for user apm_system
PASSWORD apm_system = QNSdaanAQ5fvGMrjgYnM
Changed password for user kibana_system
PASSWORD kibana_system = UFPiUj0PhFMCmFKvuJuc
Changed password for user kibana
PASSWORD kibana = UFPiUj0PhFMCmFKvuJuc
Changed password for user logstash_system
PASSWORD logstash_system = Nqes3CCxYFPRLlNsuffE
Changed password for user beats_system
PASSWORD beats_system = Eyssj5NHevFjycfUsPnT
Changed password for user remote_monitoring_user
PASSWORD remote_monitoring_user = 7Po4RLQQZ94fp7F31ioR
Changed password for user elastic
PASSWORD elastic = n816QscHORFQMQWQfs4U
注意需要將 elastic 用戶名和密碼也添加到 Kubernetes 的 Secret 對象中:
kubectl create secret generic elasticsearch-pw-elastic \
-n elastic \
--from-literal password=n816QscHORFQMQWQfs4U
(6)、驗證集群狀態
kubectl exec -n elastic \
$(kubectl get pods -n elastic | grep elasticsearch-client | sed -n 1p | awk '{print $1}') \
-- curl -u elastic:n816QscHORFQMQWQfs4U http://elasticsearch-client.elastic:9200/_cluster/health?pretty
{
"cluster_name" : "elasticsearch",
"status" : "green",
"timed_out" : false,
"number_of_nodes" : 3,
"number_of_data_nodes" : 1,
"active_primary_shards" : 2,
"active_shards" : 2,
"relocating_shards" : 0,
"initializing_shards" : 0,
"unassigned_shards" : 0,
"delayed_unassigned_shards" : 0,
"number_of_pending_tasks" : 0,
"number_of_in_flight_fetch" : 0,
"task_max_waiting_in_queue_millis" : 0,
"active_shards_percent_as_number" : 100.0
}
上面status的狀態為green,表示集群正常。到這里ES集群就搭建完了。為了方便操作可以再部署一個kibana服務,如下:
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: kibana-config
labels:
app: kibana
data:
kibana.yml: |-
server.host: 0.0.0.0
elasticsearch:
hosts: ${ELASTICSEARCH_HOSTS}
username: ${ELASTICSEARCH_USER}
password: ${ELASTICSEARCH_PASSWORD}
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: kibana
labels:
app: kibana
spec:
ports:
- port: 5601
name: webinterface
selector:
app: kibana
---
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
annotations:
prometheus.io/http-probe: 'true'
prometheus.io/scrape: 'true'
name: kibana
namespace: elastic
spec:
rules:
- host: kibana.coolops.cn
http:
paths:
- backend:
serviceName: kibana
servicePort: 5601
path: /
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: kibana
labels:
app: kibana
spec:
selector:
matchLabels:
app: kibana
template:
metadata:
labels:
app: kibana
spec:
containers:
- name: kibana
image: docker.elastic.co/kibana/kibana:7.8.0
ports:
- containerPort: 5601
name: webinterface
env:
- name: ELASTICSEARCH_HOSTS
value: "http://elasticsearch-client.elastic.svc.cluster.local:9200"
- name: ELASTICSEARCH_USER
value: "elastic"
- name: ELASTICSEARCH_PASSWORD
valueFrom:
secretKeyRef:
name: elasticsearch-pw-elastic
key: password
volumeMounts:
- name: config
mountPath: /usr/share/kibana/config/kibana.yml
readOnly: true
subPath: kibana.yml
volumes:
- name: config
configMap:
name: kibana-config
---
然后執行kubectl apply -f kibana.yaml創建kibana,查看pod的狀態是否為running。
# kubectl get pod -n elastic
NAME READY STATUS RESTARTS AGE
elasticsearch-client-f79cf4f7b-pbz9d 1/1 Running 0 30m
elasticsearch-data-0 1/1 Running 0 33m
elasticsearch-master-77d5d6c9db-gklgd 1/1 Running 0 36m
elasticsearch-master-77d5d6c9db-gvhcb 1/1 Running 0 36m
elasticsearch-master-77d5d6c9db-pflz6 1/1 Running 0 36m
kibana-6b9947fccb-4vp29 1/1 Running 0 3m51s
如下圖所示,使用上面我們創建的 Secret 對象的 elastic 用戶和生成的密碼即可登錄:
登錄后界面如下:
3.2、搭建skywalking server
我這里使用helm安裝
(1)安裝helm,這里是使用的helm3
wget https://get.helm.sh/helm-v3.0.0-linux-amd64.tar.gz
tar zxvf helm-v3.0.0-linux-amd64.tar.gz
mv linux-amd64/helm /usr/bin/
說明:helm3沒有tiller這個服務端了,直接用kubeconfig進行驗證通信,所以建議部署在master節點
(2)下載skywalking的代碼
mkdir /home/install/package -p
cd /home/install/package
git clone https://github.com/apache/skywalking-kubernetes.git
(3)進入chart目錄進行安裝
cd skywalking-kubernetes/chart
helm repo add elastic https://helm.elastic.co
helm dep up skywalking
helm install my-skywalking skywalking -n skywalking \
--set elasticsearch.enabled=false \
--set elasticsearch.config.host=elasticsearch-client.elastic.svc.cluster.local \
--set elasticsearch.config.port.http=9200 \
--set elasticsearch.config.user=elastic \
--set elasticsearch.config.password=n816QscHORFQMQWQfs4U
先要創建一個skywalking的namespace: kubectl create ns skywalking
(4)查看所有pod是否處於running
# kubectl get pod
NAME READY STATUS RESTARTS AGE
my-skywalking-es-init-x89pr 0/1 Completed 0 15h
my-skywalking-oap-694fc79d55-2dmgr 1/1 Running 0 16h
my-skywalking-oap-694fc79d55-bl5hk 1/1 Running 4 16h
my-skywalking-ui-6bccffddbd-d2xhs 1/1 Running 0 16h
也可以通過以下命令來查看chart。
# helm list --all-namespaces
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
my-skywalking skywalking 1 2020-09-29 14:42:10.952238898 +0800 CST deployed skywalking-3.1.0 8.1.0
如果要修改配置,則直接修改value.yaml,如下我們修改my-skywalking-ui的service為NodePort,則如下修改:
.....
ui:
name: ui
replicas: 1
image:
repository: apache/skywalking-ui
tag: 8.1.0
pullPolicy: IfNotPresent
....
service:
type: NodePort
# clusterIP: None
externalPort: 80
internalPort: 8080
....
然后使用以下命名升級即可。
helm upgrade sky-server ../skywalking -n skywalking
然后我們可以查看service是否變為NodePort了。
# kubectl get svc -n skywalking
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-skywalking-oap ClusterIP 10.109.109.131 <none> 12800/TCP,11800/TCP 88s
my-skywalking-ui NodePort 10.102.247.110 <none> 80:32563/TCP 88s
現在就可以通過UI界面查看skywalking了,界面如下:
3.3、應用接入skywalking agent
現在skywalking的服務端已經安裝好了,接下來就是應用接入了,所謂的應用接入就是應用在啟動的時候加入skywalking agent,在容器中接入agent的方式我這里介紹兩種。
- 在制作應用鏡像的時候把agent所需的文件和包一起打進去
- 以sidecar的形式給應用容器接入agent
首先我們應該下載對應的agent軟件包:
wget https://mirrors.tuna.tsinghua.edu.cn/apache/skywalking/8.1.0/apache-skywalking-apm-8.1.0.tar.gz
tar xf apache-skywalking-apm-8.1.0.tar.gz
(1)在制作應用鏡像的時候把agent所需的文件和包一起打進去
開發類似下面的Dockerfile,然后直接build鏡像即可,這種方法比較簡單
FROM harbor-test.coolops.com/coolops/jdk:8u144_test
RUN mkdir -p /usr/skywalking/agent/
ADD apache-skywalking-apm-bin/agent/ /usr/skywalking/agent/
注意:這個Dockerfile是咱們應用打包的基礎鏡像,不是應用的Dockerfile
(2)、以sidecar的形式添加agent包
首先制作一個只有agent的鏡像,如下:
FROM busybox:latest
ENV LANG=C.UTF-8
RUN set -eux && mkdir -p /usr/skywalking/agent/
ADD apache-skywalking-apm-bin/agent/ /usr/skywalking/agent/
WORKDIR /
然后我們像下面這樣開發deployment的yaml清單。
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
name: demo-sw
name: demo-sw
spec:
replicas: 1
selector:
matchLabels:
name: demo-sw
template:
metadata:
labels:
name: demo-sw
spec:
initContainers:
- image: innerpeacez/sw-agent-sidecar:latest
name: sw-agent-sidecar
imagePullPolicy: IfNotPresent
command: ['sh']
args: ['-c','mkdir -p /skywalking/agent && cp -r /usr/skywalking/agent/* /skywalking/agent']
volumeMounts:
- mountPath: /skywalking/agent
name: sw-agent
containers:
- image: harbor.coolops.cn/skywalking-java:1.7.9
name: demo
command:
- java -javaagent:/usr/skywalking/agent/skywalking-agent.jar -Dskywalking.agent.service_name=${SW_AGENT_NAME} -jar demo.jar
volumeMounts:
- mountPath: /usr/skywalking/agent
name: sw-agent
ports:
- containerPort: 80
env:
- name: SW_AGENT_COLLECTOR_BACKEND_SERVICES
value: 'my-skywalking-oap.skywalking.svc.cluster.local:11800'
- name: SW_AGENT_NAME
value: cartechfin-open-platform-skywalking
volumes:
- name: sw-agent
emptyDir: {}
我們在啟動應用的時候只要引入skywalking的javaagent即可,如下:
java -javaagent:/path/to/skywalking-agent/skywalking-agent.jar -Dskywalking.agent.service_name=${SW_AGENT_NAME} -jar yourApp.jar
然后我們就可以在UI界面看到注冊上來的應用了,如下:
可以查看JVM數據,如下:
也可以查看其拓撲圖,如下:
還可以追蹤不同的uri,如下:
到這里整個服務就搭建完了,你也可以試一下。
參考文檔:
1、https://github.com/apache/skywalking-kubernetes
2、http://skywalking.apache.org/zh/blog/2019-08-30-how-to-use-Skywalking-Agent.html
3、https://github.com/apache/skywalking/blob/5.x/docs/cn/Deploy-skywalking-agent-CN.md
