神經網絡解決多分類問題例:數字識別
1. 觀察樣本(Visualizing the data)
訓練集提供5000張數字圖片,每張圖片為20x20像素,並被轉化成1x400的向量存儲。樣本輸入為5000x400的矩陣,輸出為5000x1的向量。coursera提供了將灰度值轉化為圖片的函數,但這對我們解決問題沒有實質性的幫助。
2. 設計神經網絡(Designing Nural Network)
由於每一個樣本輸入為1x400的向量,因此輸入神經元應有400個。我們預測的數字共有10個,因此輸出神經元應有10個。由於問題並不復雜,只需使用1隱層即可(早期的自動駕駛試驗所使用的神經網絡為3隱層),隱層中的神經元個數定為25個。
定義三個變量存儲各層的神經元個數,方便后續調用。
input_layer_size = 400;
hidden_layer_size = 25;
output_layer_size = 10;
3. 編寫代價函數計算函數(nnCostFunction)
3.1 實現必備的工具函數
在BP神經網絡的實現過程中,有幾個操作是經常使用的。如果不將其封裝成函數很容易寫着寫着就把自己繞暈。
-
sigmoid函數
function g = sigmoid(z) g = 1 ./ (1+exp(-z)); end
-
addBias函數
由於我們在設計神經網絡時沒有考慮偏置神經元,而在前向傳播的時候,計算下一層的輸入值必須用到偏置神經元的參數\(\theta_0\),因此在這里封裝成函數。
function ans = addBias(X) ans = [ones(size(X,1)),X]; end
-
oneHot函數
one-hot-encoding譯作獨熱編碼。它用於將m*1的樣本輸出y轉化為m*output_layer_size的矩陣。對於每一行,有output_layer_size個數,分別對應各個輸出神經元是0還是1。
function ans = oneHot(y,output_layer_size) ans = zeros(size(y,1),output_layer_size); for i = 1:size(y,1) ans(i,y(i)) = 1; end end
3.2 規范化矩陣定義
在神經網絡的實現過程中,矩陣維度的錯誤可能是初學者遇見最頻繁的一個問題。而每一次發現矩陣維度錯誤時,往往又需要從輸入層開始一步步推導出正確的矩陣維度,重新修改代碼中矩陣的計算方式、計算順序。出現這種情況,往往是編寫代碼時邏輯混亂,一下子把這個矩陣寫出m*n,一下子把那個矩陣寫成n*m。如果能夠在編寫代碼前事先設計好各個矩陣的表示方法,規范化行、列的實際意義,就能在發現錯誤后快速改正,或者直接避免錯誤。
在這里我們沿用coursera的講義中的矩陣定義的規范
矩陣名稱 | 常用代號 | 矩陣規模 | 行意義 | 列意義 |
---|---|---|---|---|
輸入值矩陣 | \(X,z^{(i)}\) | m * n | 樣本個數 | 該層神經元個數(屬性個數) |
參數矩陣 | \(\Theta_{(j)}\) | (a+1) * b | 該層神經元個數(這一層的激活函數的個數) | 上一層神經元個數+1(每個激活函數的屬性個數+偏置屬性) |
輸出值矩陣 | \(Y,a^{(i)}\) | m * k | 樣本個數 | 該層神經元個數(輸出值個數) |
另外簡記: input_layer_size = n, hidden_layer_size = l, output_layer_size = K
3.3 實現前向傳播(Feedforward )
前向傳播是計算各個輸出神經元的輸出值的過程。它可以向量化計算。

將神經網絡的前向傳播定義在 nnCostFunction 函數中
傳入參數[ nn_params(所有參數值\(\theta\)的展開向量) , input_layer_size, hidden_layer_size, output_layer_size , X, y, lambda ]
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
output_layer_size, ...
X, y, lambda)
% 使用reshape函數將向量nn_params重新構造成Theta1,Theta2兩個矩陣。注意,Theta1,Theta2兩個矩陣
% 都是考慮了偏置神經元的。
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
output_layer_size, (hidden_layer_size + 1));
% 樣本個數
m = size(X, 1);
% 代價值
J = 0;
% 梯度值
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% 初始化完成
% ==============================================================================
% ==============================================================================
% Part1: 實現前向傳播
% 前向傳播
z2 = addBias(X) * Theta1';
a2 = sigmoid(z2);
z3 = addBias(a2) * Theta2';
a3 = sigmoid(z3);
% 獨熱編碼
encodeY = oneHot(y,output_layer_size);
% tempTheta 用於計算正則項,將偏置神經元對應的theta全部置0
tempTheta2 = Theta2;
tempTheta2(:,1) = 0;
tempTheta1 = Theta1;
tempTheta1(:,1) = 0;
J = 1/m * sum(sum((-encodeY .* log(a3) - (1-encodeY) .* log(1-a3)))) + 1/(2*m) * lambda * (sum(sum(tempTheta1 .^2)) + sum(sum(tempTheta2 .^ 2)) );
代價函數計算公式
神經網絡的學習能力過強,可以擬合高度復雜的模型。因此如果不加以正則化很可能會過擬合。此時經驗誤差很小而泛化誤差不夠小
3.4 實現反向傳播(Backpropagation)
這一節是反向傳播算法的核心部分,也是最難懂、寫代碼時最復雜的一部分。初學時肯定很頭疼,我在這部分卡了3天沒能理解。
這一部分設計鏈式法則和矩陣求導,其中鏈式法則必須會,矩陣求導如果不會可以先通過矩陣的維度來推導結果(推導得相對慢一些)。
推薦b站一個視頻,詳細的講了反向傳播算法的梯度值計算。她還發過吳恩達神經網絡解數字識別的Python實現,我沒看不過總體思路肯定和matlab實現類似,可以作為理解反向傳播算法的一個講解視頻。
反向傳播算法用於解決梯度計算。通過鏈式法則與矩陣求推導出各個參數\(\theta\)的梯度
Theta2_grad = 1/m*(a3-encodeY)' * addBias(a2) + lambda * tempTheta2/m;
Theta1_grad = 1/m*(Theta2(:,2:end)' * (a3-encodeY)' .* a2' .* (1-a2') * addBias(X)) + lambda * tempTheta1 / m;
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
4. 高級最優化訓練神經網絡(Learning parameters using fmincg)
4.1 隨機初始化參數
function W = randInitializeWeights(L_in, L_out)
W = zeros(L_out, 1 + L_in);
% Randomly initialize the weights to small values
epsilon_init = 0.12;
W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;
end
隨機初始化參數對於神經網絡的重要性不必多提,屬於基礎知識,不明白的可以重新看一看吳恩達的那節課。
initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
initial_Theta2 = randInitializeWeights(hidden_layer_size, output_layer_size);
% 展開成向量,便於傳遞參數
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];
4.2 調用高級最優化函數訓練神經網絡
這是coursera給出的高級最優化函數 fmincg。使用前先學習用法,如果不會用就用fminunc,略慢一些。
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied. As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application. All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%
% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
length = options.MaxIter;
else
length = 100;
end
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = ['feval(f, X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quanteties
while 1
while ((f2 > f1+z1*RHO*d1) || (d2 > -SIG*d1)) && (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
end
if isnan(z2) || isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect
end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2
end
if f2 > f1+z1*RHO*d1 || d2 > -SIG*d1
break; % this is a failure
elseif d2 > SIG*d1
success = 1; break; % success
elseif M == 0
break; % failure
end
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) || isnan(z2) || isinf(z2) || z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
else
z2 = (limit-z1)/2; % otherwise bisect
end
elseif (limit > -0.5) && (z2+z1 > limit) % extraplation beyond max?
z2 = (limit-z1)/2; % bisect
elseif (limit < -0.5) && (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit
elseif z2 < -z3*INT
z2 = -z3*INT;
elseif (limit > -0.5) && (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);
end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;
end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail
else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed || i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed
end
if exist('OCTAVE_VERSION')
fflush(stdout);
end
end
fprintf('\n');
調用部分
options = optimset('MaxIter', 50);
% You should also try different values of lambda
lambda = 1;
% Create "short hand" for the cost function to be minimized
costFunction = @(p) nnCostFunction(p, ...
input_layer_size, ...
hidden_layer_size, ...
output_layer_size, X, y, lambda);
% Now, costFunction is a function that takes in only one argument (the
% neural network parameters)
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
% Obtain Theta1 and Theta2 back from nn_params
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
output_layer_size, (hidden_layer_size + 1));
5.計算經驗誤差 / 調整參數 / 模型評估(Trying out different learning settings)
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
h1 = sigmoid([ones(m, 1) X] * Theta1');
h2 = sigmoid([ones(m, 1) h1] * Theta2');
[dummy, p] = max(h2, [], 2);
% =========================================================================
end
調用函數
pred = predict(Theta1, Theta2, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
調整參數,可以觀察經驗誤差的變化
\(\lambda\) | \(Max \ \ Iterations\) | \(accuracy\) |
---|---|---|
1 | 50 | 94.34% ~ 96.00% |
1 | 100 | 98.64% |
1.5 | 1000 | 99.04% |
1.5 | 5000(折磨電腦) | 99.26% |
2 | 2000 | 98.68% |
這些都是經驗誤差,而我們的目的是減小泛化誤差。然而coursera沒有給出測試集,我們暫時不去測泛化誤差了。嚴格來說還應該有泛化誤差的測量部分。
6. 觀察隱層神經元(Visualizing the hidden layer)
這一部分顯得沒有那么重要,我們可以看看隱層神經元到底在干些什么。
對於每一個隱層神經元,找到一組輸入vector[1,400]使之激活值接近1(此時表示其極大可能性為某一種狀態,而此時其余神經元均接近於0)。然后將其轉化成20x20像素圖像。
fprintf('\nVisualizing Neural Network... \n')
displayData(Theta1(:, 2:end));
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
