參數過多會導致模型過於復雜而出現過擬合現象,通過在loss函數添加關於參數個數的代價變量,限制參數個數,來達到減小過擬合的目的
以下是loss公式:
代碼多了一個kernel_regularizer參數
import tensorflow as tf def preporocess(x,y): x = tf.cast(x,dtype=tf.float32) / 255 x = tf.reshape(x,(-1,28 *28)) # 鋪平 x = tf.squeeze(x,axis=0) # print('里面x.shape:',x.shape) y = tf.cast(y,dtype=tf.int32) y = tf.one_hot(y,depth=10) return x,y def main(): # 加載手寫數字數據 mnist = tf.keras.datasets.mnist (train_x, train_y), (test_x, test_y) = mnist.load_data() # 處理數據 # 訓練數據 db = tf.data.Dataset.from_tensor_slices((train_x, train_y)) # 將x,y分成一一對應的元組 db = db.map(preporocess) # 執行預處理函數 db = db.shuffle(60000).batch(2000) # 打亂加分組 # 測試數據 db_test = tf.data.Dataset.from_tensor_slices((test_x, test_y)) db_test = db_test.map(preporocess) db_test = db_test.shuffle(10000).batch(10000) # 設置超參 iter_num = 2000 # 迭代次數 lr = 0.01 # 學習率 # 定義模型器和優化器 model = tf.keras.Sequential([ tf.keras.layers.Dense(256, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), # kernel_regularizer是loss上加了關於參數的損失變量 tf.keras.layers.Dense(128, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), tf.keras.layers.Dense(64, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), tf.keras.layers.Dense(32, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), tf.keras.layers.Dense(10) ]) # 優化器 # optimizer = tf.keras.optimizers.SGD(learning_rate=lr) optimizer = tf.keras.optimizers.Adam(learning_rate=lr) # 定義優化器 model.compile(optimizer= optimizer,loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy']) # 定義模型配置 model.fit(db,epochs=30,validation_data=db,validation_freq=2) # 運行模型,參數validation_data是指在哪個測試集上進行測試 model.evaluate(db_test) # 最后打印測試數據相關准確率數據 if __name__ == '__main__': main()