import tensorflow as tf import numpy as np ############### tf.Variable(initial value,dtype) ############### print('############數字為參數###########') a = tf.Variable(3) print('數字為參數a:',a) print('############列表為參數###########') a = tf.Variable([1,6]) print('列表為參數a:',a) print('############np數組為參數###########') a = tf.Variable(np.array([3,6.0])) print('np數組為參數a:',a) print('############張量為參數###########') a = tf.Variable(tf.constant([[1,1],[2,2],[2,3]])) print('張量為參數a:',a) print('a.trainable:',a.trainable) # 該變量是否可以被訓練 print('type(a):',type(a)) print() ############### 對象名.assign() ############### a = tf.Variable([1,2,3]) print('原可訓練變量a:',a) a.assign([4,2,3]) # 將可訓練變量改變 print('改變后的a:',a) a.assign_add([4,0,5]) # 將變量相加 print('相加后的變量a:',a) a.assign_sub([8,8,8]) # 將變量相減 print('相減后的變量a:',a) print() ############### isinstance() ############### a = tf.constant(5) b = tf.Variable(5) print('a:{}\nb{}'.format(a,b)) print("isinstance(a,tf.Tensor):{},isinstance(a,tf.Variable):{}".format(isinstance(a,tf.Tensor),isinstance(a,tf.Variable))) print("isinstance(b,tf.Tensor):{},isinstance(b,tf.Variable):{}".format(isinstance(b,tf.Tensor),isinstance(b,tf.Variable)))