如何得到中間層特征:
如果只想得到中間層特征,而不需要得到gradient之類的,那么不需要hook函數這么復雜。只需要在forward函數中添加一行代碼,將feature賦值給self變量即可,即self.feature_map = feature
給一個例子:
# Define a Convolutional Neural Network
class
Net(nn.Module):
def __init__(self, kernel_size=5, n_filters=16, n_layers=3):
xxx
def forward(self, x):
x = self.body(self.head(x))
self.featuremap1 = x.detach() # 核心代碼
return F.relu(self.fc(x))
model_ft = Net()
train_model(model_ft)
feature_output1 = model_ft.featuremap1.transpose(1,0).cpu()
這樣就得到了feature_map,並保存到了feature_output變量中。
如何顯示中間層特征:
給出一個簡單顯示代碼
def feature_imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.detach().numpy().transpose((1, 2, 0))
mean = np.array([0.5, 0.5, 0.5])
std = np.array([0.5, 0.5, 0.5])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
out = torchvision.utils.make_grid(feature_ouput1)
feature_imshow(out)
結果圖如下:
