如何得到中间层特征:
如果只想得到中间层特征,而不需要得到gradient之类的,那么不需要hook函数这么复杂。只需要在forward函数中添加一行代码,将feature赋值给self变量即可,即self.feature_map = feature
给一个例子:
# Define a Convolutional Neural Network
class
Net(nn.Module):
def __init__(self, kernel_size=5, n_filters=16, n_layers=3):
xxx
def forward(self, x):
x = self.body(self.head(x))
self.featuremap1 = x.detach() # 核心代码
return F.relu(self.fc(x))
model_ft = Net()
train_model(model_ft)
feature_output1 = model_ft.featuremap1.transpose(1,0).cpu()
这样就得到了feature_map,并保存到了feature_output变量中。
如何显示中间层特征:
给出一个简单显示代码
def feature_imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.detach().numpy().transpose((1, 2, 0))
mean = np.array([0.5, 0.5, 0.5])
std = np.array([0.5, 0.5, 0.5])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
out = torchvision.utils.make_grid(feature_ouput1)
feature_imshow(out)
结果图如下:
